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A B S T R A C T

The morphometric characteristics of the retinal vasculature are associated with future risk of many systemic and
vascular diseases. However, analysis of data from large population based studies is needed to help resolve un-
certainties in some of these associations. This requires automated systems that extract quantitative measures of
vessel morphology from large numbers of retinal images. Associations between retinal vessel morphology and
disease precursors/outcomes may be similar or opposing for arterioles and venules. Therefore, the accurate
detection of the vessel type is an important element in such automated systems. This paper presents a deep
learning approach for the automatic classification of arterioles and venules across the entire retinal image,
including vessels located at the optic disc. This comprises of a convolutional neural network whose architecture
contains six learned layers: three convolutional and three fully-connected. Complex patterns are automatically
learnt from the data, which avoids the use of hand crafted features. The method is developed and evaluated using
835,914 centreline pixels derived from 100 retinal images selected from the 135,867 retinal images obtained at
the UK Biobank (large population-based cohort study of middle aged and older adults) baseline examination. This
is a challenging dataset in respect to image quality and hence arteriole/venule classification is required to be
highly robust. The method achieves a significant increase in accuracy of 8.1% when compared to the baseline
method, resulting in an arteriole/venule classification accuracy of 86.97% (per pixel basis) over the entire retinal
image.
1. Introduction

Inspection of the retinal blood vessels enables a direct and non-
invasive view of the blood circulatory system, with images being easily
captured using fundus photography. There has been considerable interest
in using retinal vessel size and shape as a marker of vascular health
status. The morphology of retinal vessels has been prospectively associ-
ated with cardiovascular and systemic diseases [1–4]. Associations be-
tween retinal vessel morphology and disease precursors/outcomes may
be similar or opposing for arterioles and venules. For example, hyper-
tension and atherosclerosis may have different effects in retinal arterioles
and venules resulting in a decreased arteriole to venule width (AVR) [5].
Automated systems (e.g. QUARTZ [6,7] and VAMPIRE [8–10]) that
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extract quantitative measures of vessel morphology from large numbers
of retinal images are needed to power these biomarker discovery studies,
in which the automated classification of arterioles and venules is an
essential element.

The appearance of arterioles and venules in retinal images are very
similar. However, they can be differentiated in general using the
following features as documented by Kondermann [11]:

� Arterioles are brighter than venules.
� Arterioles are thinner then neighbouring venules.
� The central reflex (the light reflex of the inner parts of the vessels) is
wider in arterioles and smaller in venules.
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� Arterioles and venules usually alternate near the optic disc before
branching out; that means near the optic disc one arteriole is usually
next to two venules and the other way round.

There are challenges in building a robust vessel classification system.
There is intra-image and inter-image variance in respect to colour,
contrast and luminosity. The size and colour of vessels changes as they
move away from the optic disc due to changes in levels of oxygenation. In
the periphery (far away from the optic disc) vessels become so thin that
are almost indistinguishable.

A number of automated methods have been reported in retinal arte-
riole/venule (a/v) classification. These can be divided into two broad
categories; feature based and graph based methods. The majority of
methods start with the segmentation of the vasculature followed by the
creation of the vessel centrelines and then the removal of bifurcation and
crossover points to create vessel segments. The centreline pixels are
classified as arteriole or venule, and this information is then used to
award the whole vessel segment as either arteriole or venule. Alterna-
tively, some methods avoid pixel classification and make a direct deci-
sion on the a/v status of a vessel segment.

The most popular approaches are feature based methods. Konder-
mann [11] addressed intra-image variability by approximating the
background and removing this from the image. Classification of the
centreline pixels was then achieved using colour features from a square
region centred on the target pixel and a neural network with one hidden
layer of 40 neurons. Grisan [12] divided the image into four quadrants
with the assumption that each quadrant had at least one arteriole and one
venule. Within a quadrant, centreline pixels were classified using fuzzy
clustering based on RGB (red, green, blue) and HSL (hue, saturation,
lightness) features measured from a local circular region centred on the
pixel. The use of quadrants exploited the local nature of a/v classification
and thereby addressed the issue of intra and inter-image variability. Saez
[13] and Vazquez [14] rotated the four quadrants in steps of 20� with the
aim of fulfilling the assumption that each quadrant should contain at
least one arteriole and one venule. Both performed K-means clustering
based on vessel profiles and their RGB and HSL colour information.
Vazquez [14] improved performance with the use of a tracking procedure
to connect segments that belong to the same vessel based on finding the
path of minimal cost between two points using image information.

Other feature based methods include the following. Fraz [15] avoided
the computational expense of the quadrant based approach and
addressed intra and inter-image variability using shade correction and
image normalization. Classification of the centreline pixels was per-
formed using the ensemble classifier of bagged decision trees and pixel
based, profile based and segment based features from both RGB and HSI
(hue, saturation, intensity) colour spaces. Relan [16] developed amethod
with a feature vector based on colour information calculated from a
circular neighbour around the target pixel. Classification was performed
using a Least Square Support Vector Machine, and showed that the
method performed well using a small training dataset. This is the latest
method to be incorporated into the VAMPIRE software [8–10]. Niemeijer
[17] proposed methodology that labelled centreline pixels using a 27-D
feature vector and the linear discriminant classifier. Pixel and vessel
profile based features were used based on RGB and HSI colour infor-
mation. Performance was improved using the prior knowledge that ar-
terioles and venules usually come in pairs, thus an iterative approach was
used to match arteriole venule pairs. Xu [18] proposed novel features for
a/v classification which included first and second order texture features
measured from the vessel profile and an image patch around the target
pixel. A k-nearest neighbour was used for classification.

Graph based approaches make up a smaller section of the literature.
Rothaus [19] and Dashtbozorg [20] used the centreline of the vascula-
ture to produce a planar graph, in which each link corresponded to a
vessel segment and the nodes represented the branches or crossings of
the vessel segments. Using information on the node (e.g. number of links
connected to the node, orientation of each link etc.), the node type was
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determined. Once all nodes on the graph had been identified then all
links that belong to a particular vessel could be identified. Rothaus [19]
required a few manually labelled vessel segments and then this rule
based method was used to propagate vessel labels through the vascular
graph. Dashtbozorg [20] separately performed a/v classification for
every centreline pixel using a 30-D feature vector based on colour in-
formation and a linear discriminant analysis classifier; this was combined
with the graph based labelling to achieve the final classification. Estrada
[21] did not use a rule based method to determine the type of nodes of
the planar graph. Instead the method took an optimization based
approach where it determined the most likely set of a/v labels by effi-
ciently searching through the space of possible a/v labelled trees. A
global likelihood model that used the features of local growth, overlap
and colour was used to determine the quality of each directed tree (a/v
labelled tree).

There are many other notable a/v classification methods [22–25].
Existing methods can heavily rely on hand crafted features and thereby
can be limited to what humans perceive as interpretable differences be-
tween arterioles and venules. Graph based approaches can struggle when
sections of the vasculature cannot be segmented, resulting in unreli-
ability when linking vessel segments. Therefore, there is scope for
improvement in a/v classification.

In the past few years there has been a shift towards methods
employing deep learning approaches across a variety of fields. Deep
learning is a subfield of machine learning concerned with algorithms
inspired by the structure and function of the brain called artificial neural
networks. Deep referring to the number of layers in the network. The
driving force behind deep learning is that we now have fast enough
computers and large enough datasets to actually train large neural net-
works. Neural network results get better with more data and larger
models, but in turn require more computation to train. In addition to
scalability, another benefit of deep learning models is their ability to
perform automatic feature extraction from raw data, also called feature
learning. Automatically learning features at multiple levels of abstraction
allow a system to learn complex functions mapping the input to the
output directly from data, without depending completely on human-
crafted features. A convolutional neural network (CNN) is a powerful
deep learning technique whose architectures make the explicit assump-
tion that the inputs are images. Since winning the ImageNet [26]
competition in 2012 with AlexNet [27], CNNs have gained wide popu-
larity in computer vision. The highest performing algorithms in the
recent Kaggle competition [28], which completed in July 2015, all used
CNNs to identify signs of Diabetic retinopathy in retinal images. The
application of CNNs on retinal images continues to grow with multiple
recent studies [29–36]. To the best of our knowledge deep learning has
yet to be applied to tackle a/v classification.

In this paper, we present a convolutional neural network architecture
designed for the automated classification of arterioles and venules in
retinal images. Implementing deep learning enabled complex patterns to
automatically be learnt from the data; thus, avoiding the use of hand
crafted features. The classification was performed across the entire
vasculature in the retinal images and not simply concentric areas centred
on the optic disc or a limited number of pre-specified retinal vessel lo-
cations. The method has been developed and evaluated using retinal
images from UK Biobank which is a large population-based cohort study.
The proposed method will replace the current a/v classification method
[15] in QUARTZ (QUantitative Analysis of Retinal vessel Topology and
siZe) [6,7]. QUARTZ is a retinal image analysis system developed by our
research group, capable of processing large numbers of retinal images
and obtains quantitative measures of vessel morphology to be used in
epidemiological studies [37].

2. Materials

UK Biobank [38] contains a very large retinal image repository (135,
867 images from 68,549 participants at baseline examination) in a
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middle-aged population-based cohort study. The sizable amount of
health data recorded make it a powerful research resource for epidemi-
ological studies. The entire UK Biobank retinal image dataset has now
been processed by QUARTZ, which incorporated our proposed a/v
classification algorithm. The retinal images are macular centred and
colour; captured with a non-mydriatic fundus camera (Topcon
3DOCT-1000 Mk 2) with a 45� field-of-view and saved in PNG format
with a resolution of 2048 � 1536 pixels. The UK Biobank study was
approved by the Northwest Region NHS research ethics committee.

For training and evaluating a/v classification, 100 retinal images
were used. As will be explained in section 3.4, this equated to 835,914
centreline pixels from 5881 vessel segments. These 100 images were
randomly selected from 96,518 out of 135,867 images in the UK Biobank
dataset that had been automatically labelled by QUARTZ as being of
adequate image quality for use in epidemiological studies [39]. From our
experience, most large retinal datasets used in epidemiological studies
(e.g. UK Biobank and EPIC-Norfolk [40]) contain large amounts of poor
quality images caused by a variety of issues. In an attempt to reduce
wastage, QUARTZ was designed to be capable of extracting useful in-
formation from some poor quality images [39]. This meant images
deemed as adequate by QUARTZ still possessed considerable variability
in image quality (see Fig. 1). This made this a challenging dataset and
hence a/v classification was required to be highly robust.

3. Method

3.1. Overview

The vascular network was segmented from the retinal image and the
vascular skeleton consisting of centreline pixels was constructed. Vessel
segments were generated by the search and removal of bifurcations and
crossover points. For each centreline pixel in a vessel segment, a small
square colour image patch centred on the target pixel was provided as the
input for the convolutional neural network (CNN) in order to assign an
arteriole or venule label to the target pixel. The labels for the centreline
pixels were then used to award the whole vessel segment as arteriole or
venule using a voting strategy.

The proposed methodology has the same initial framework as work
previously published by our research group [15], thus section 3.2 and 3.3
shall be kept brief. The new addition shall be detailed in sections 3.4–3.7
which comes in the form of a convolutional neural network to replace an
ensemble classifier of bagged decision trees which used hand crafted
features from the RGB and HSI colour spaces.
3.2. Vessel segmentation and segment extraction

An unsupervised vessel segmentation approach based on a multi-scale
line detector [41] was implemented on the inverted green channel of the
coloured retinal images. This was based on the approximation of retinal
Fig. 1. Retinal images of differing quality deem
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vessel segments being piecewise linear. The average grey-level of the
pixels along a line passing through the target pixel was calculated at 12
different orientations spaced by 15� each. For the target pixel, the
line-strength was obtained from the orientation with the largest value
subtracted by the average grey-level of a square sub-window centred at
the target pixel. As this was a multiscale approach, lines of different
lengths (15,17,19,21 pixels) were applied and a linear combination of
responses resulted in a final line-strength image. This was followed with
the application of a hysteresis thresholding based morphological recon-
struction to produce the segmented vasculature.

A morphological thinning operation was applied to the segmented
vasculature to create one pixel wide vessel centrelines. Vessel segments
were created from these centrelines by first removing spurs (�10 pixels),
followed by the removal of bifurcation and crossover points, and ending
with the removal of short segments (�15 pixels). Fig. 2 illustrates the
outputs of this procedure.
3.3. Pre-processing

The absolute colour of the blood in the vessels varies within the im-
ages (intra-image) and across the subjects (inter-image). To reduce intra-
image variation shade correction was performed, which was accom-
plished by estimating the background image and subtracting that from
the original image. The background image was obtained by mean
filtering the original image with a 151 � 151 pixel kernel. Image
normalization was then used to reduce inter-image variation. In which
the histogram was calculated and the median value was found (belonged
to the background of the retinal image). Then a simple linear intensity
transformation set the median value to unified centre (0.5 in this study)
and standardized the intensity around this value. These pre-processing
steps were performed for each of the RGB colour channels individually.
The results of pre-processing are shown in Fig. 3.
3.4. Data preparation and augmentation

This was a two-class problem and the methodology was designed so
that the classifier would label each vessel centreline pixel as belonging to
an arteriole or a venule. CNNs require a large amount of labelled data for
training. As explained in Section 2, 100 retinal images were used in this
study. The extracted vessel segments from these images were manually
labelled as arteriole or venule by two human observers (clinicians). The
labelled data by the first observer was used as the reference standard. The
second observer labelled a random subset of five images; and a high
agreement of 98.84% was achieved between the two observers. All
centreline pixels in a segment took up the manual label awarded to the
segment. This equated to 835,914 centreline pixels (5881 vessel seg-
ments in total) possessing a manual label. This labelled data was then
randomly divided into 50 training images, 15 validation images and 35
testing images corresponding to 424,122, 115,262, 314,409 centreline
ed as adequate by QUARTZ. © UK Biobank.



Fig. 2. Zoom-in regions: (a) colour retinal image, (b) segmented vasculature, (c) extracted vessel segments. © UK Biobank. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. (a)–(b) Original retinal images, (c)–(d) pre-processed images. © UK Biobank.
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pixels respectively. The training data was balanced (validation data was
also balanced) to ensure the CNN has no bias to either class (arteriole or
venule). The test data remained unchanged to represent the real-
world scenario.

For each centreline pixel in a vessel segment, a 31 � 31 pixel colour
(pre-processed) image patch centred on the target pixel was provided and
the intention was to use convolutional neural networks (CNN) in order to
assign an arteriole or venule label to the target pixel (examples shown in
Fig. 4). With deep learning, the size of the network means that overfitting
can become a significant problem, even with 400,000 þ training exam-
ples. Artificially enlarging the training dataset, known as data augmen-
tation, was applied to reduce overfitting. This came in the form of image
translations and horizontal reflections, achieved by extracting random
25 � 25 pixel colour patches (with random horizontal reflections) from
the 31 � 31 patches and training our network (as explained in section
3.6) on these extracted patches. This increased the size of the training set
by a factor of 72, although this included some repetition due to adjacent
centreline pixels' local regions having large overlaps.
Fig. 4. Centreline of a vessel and examples of 31 � 31 pixel colour (pre-processed) image
patches created for different centreline pixels. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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3.5. Network architecture

Convolutional neural networks are very similar to regular neural
networks: they are made up of neurons that have learnable weights and
biases (parameters), with the neurons arranged in layers. Each neuron
receives some inputs, performs a dot product and optionally follows it
with a non-linearity (activation function: tanh, sigmoid, ReLU). Howev-
er, CNN architectures make the explicit assumption that the inputs are
images, to exploit the strong spatially local correlation present in natural
images. Instead of a neuron being connected to every neuron in the
previous layer, each neuron connects to only a local region (receptive
field of the neuron) from the previous layer. Thus, each neuron only
learns weights for inputs from its receptive field, vastly reducing the
amount of parameters in the network. A layer of a CNN has neurons
arranged in 3 dimensions: width, height and depth. Note that the
receptive field of a neuron is small spatially (along width and height), but
extends through the full depth of the previous layer. All neurons at a
single depth (referred to as depth slice) use the same weights (parameter
sharing). Thus, the output of a layer can in each depth slice be computed
as a convolution of the neuron's weights with the input volume. This is
why it is common to refer to the sets of weights as a filter, that is
convolved with the input. The depth corresponds to the number of filters
in the layer. Stanford University [42] provide a thorough introduction
to CNNs.

The paragraph above describes convolutional layers; however, there
are other layers used to build CNN architecture. Typical layers are:
convolutional, ReLU, cross channel normalization, pooling, fully-
connected (exactly as in regular neural networks), dropout and soft-
max. The ReLU (rectified linear units) activation function introduces
nonlinearity to the system and is preferred over the tanh and sigmoid
functions due to the computational efficiency it brings to training.
Pooling, cross channel normalization and dropout all help against over-
fitting. In addition, pooling is used to reduce the number of parameters in
the network. The softmax layer follows the final fully-connected layer



Table 1
Details of the convolutional, max-pooling and fully-connected layers of proposed CNN
architecture.

Layer Size Filter size Stride Zero-Padding

Input 25 � 25 � 3 – – –

Convolutional 23 � 23 � 24 3 � 3 � 3 1 0
Max-Pooling 11 � 11 � 24 3 � 3 2 0
Convolutional 11 � 11 � 48 3 � 3 � 24 1 1
Convolutional 11 � 11 � 48 3 � 3 � 48 1 1
Max-Pooling 5 � 5 � 48 3 � 3 2 0
Fully-Connected 85 – – –

Fully-Connected 85 – – –

Fully-Connected 2 – – –
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and produces a probability distribution over the output class labels.
We propose a CNN designed to label the input (25� 25� 3 extracted

image patch) with the class label of arteriole or venule. The proposed
architecture contained 6 layers with weights, the first three were con-
volutional and the remaining three were fully-connected. The three
convolutional layers had 24, 48 and 48 filters of size 3 � 3 � 3,
3 � 3 � 24 and 3 � 3 � 48 respectively. The three fully-connected layers
contained 85, 85 and 2 neurons respectively, the final layer contained 2
neurons as there were two classes. The ReLU layer followed every con-
volutional layer and the first two fully-connected layers. Cross channel
normalization (window channel size ¼ 5) followed all the convolutional
layers. Overlapping max-pooling followed the first and third convolu-
tional layers. Dropout (probability ¼ 0.5) followed the first two fully-
connected layers. The final fully-connected layer was followed by a
softmax layer which outputs a probability score for the arteriole class and
the venule class. Fig. 5 illustrates the order of these layers in our network.
Table 1 provides additional details (e.g. stride, zero-padding etc.) on the
convolutional, max-pooling and fully connected layers of our CNN and
Fig. 6 provides a schematic overview. Overall our CNN architecture
amounted to 141,439 parameters.

3.6. Details of learning

The parameters (weights and biases) in the convolutional and fully-
connected layers were trained by backpropagation and gradient
descent (with the cross-entropy cost function) so that the class scores that
the CNN computed were consistent with the manual a/v labels in the
training set (25 � 25 � 3 extracted image patches). Stochastic gradient
descent was used with a mini-batch size of 128 samples, momentum of
0.9 and L2regularization (weight decay) of 0.0005. The weights in each
layer were initialised from a Gaussian distribution with a mean of 0 and a
standard deviation of 0.01. The initial biases were set to 0. The learn rate
was initialised at 0.01 and was divided by 10 every 10 epochs. Training
was run for a maximum of 30 epochs. The training set was shuffled prior
to being used. Training took 32 h on a NVIDIA Quadro K1100 M
2GB GPU.

To further combat overfitting on the training set, the performance of
the model on the validation set was recorded at every epoch. The accu-
racy for the validation set peaked at epoch 14 with 83.46%. Therefore,
the parameters of the CNN at epoch 14 was chosen as the final model.
Fig. 7 plots the model accuracy for the training set and the validation set;
it is evident that after epoch 14 slight overfitting began to occur (the
accuracy for the validation set stops increasing whilst the accuracy for
the training set continues to increase).

The trained CNN had learnt filters which can be considered as auto-
matically learnt features. Fig. 8 displays the automatically learnt features
from the first convolutional layer. Notice how the first layer of the
network had learnt some filters for capturing edge features. These
primitive features were then processed by deeper network layers, which
combine the early features to form higher-level image features. These
higher-level features are better suited for recognition tasks because they
combine all the primitive features into a richer image representation.
Fig. 5. Layers of propose
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3.7. Vessel labels

The final label of the vessel centreline pixel was obtained by the
trained CNN's prediction of ten different 25 � 25 colour image patches
extracted from the 31 � 31 colour image patch. Four corner patches and
the centre patch as well as their horizontal reflections (hence ten patches
overall); averaging the predictions made by the CNN's softmax layer on
the ten patches. This procedure was followed for both the validation and
the testing phase.

The soft labels assigned to the centreline pixels were regarded as a
vote for the label of the complete vessel segment, and the mean of these
votes was assigned as the label for the entire vessel segment. This pro-
cedure was performed across the entire vasculature in the retinal images.

4. Results

To evaluate the proposed system, the true positives (TP), false posi-
tives (FP), true negatives (TN) and false negatives (FN) were calculated
for each vessel type (see Table 2) and the performance metrics have been
calculated separately for arterioles and venules (see Table 3). Evaluation
of the system was performed on both a centreline pixel basis and a
segment basis.

In the first instance, the methodology was evaluated (using the test
data) in terms of a centreline pixel basis prior to the implementation of
the voting strategy for the segment label. This gives a direct sight into the
classifier's performance. These results are presented in Table 4 along with
the performance of the baseline method in which we implemented the
approach by Fraz [15] on the exact same UK Biobank data. The proposed
CNN achieves an accuracy of 82.26% (pixel basis).

Following the segment voting strategy the accuracy on a pixel basis
increases to 86.97% (consider all centreline pixels within the segment
take on the label of the segment) and the accuracy on a segment basis is
85.24%. These results are listed in Table 5. For comparison, the perfor-
mance was also assessed over a specific region-of-interest (ROI), 0.5–1.0
optic disc diameters from the optic disc boundary. These results are listed
in Table 6. The classification of vessel segments into arterioles and ve-
nules is shown in Fig. 9, where the red colour segments represent arte-
rioles and blue colour segments represent venules.

The reported results for other a/v classification methods are pre-
sented in Table 7. To enable a better comparison to these methods, the
d CNN architecture.



Fig. 6. Schematic overview of proposed CNN architecture with respect to the convolutional (CONV), max-pooling (MP) and fully-connected (FC) layers. S ¼ stride.

Fig. 7. Plot of model accuracy on the training set (recorded at every iteration) and vali-
dation set (recorded at every epoch). Each evaluation of the gradient using the mini-batch
is an iteration. The full pass of the training over the entire training set using mini-batches
is an epoch.

Fig. 8. 24 filters of size 3 � 3 � 3 (resized here for visualisation) learnt by the first
convolutional layer on the 25 � 25 � 3 input image patches.

Table 2
Vessel classification measures, calculated separately on a centreline pixel basis
and on a segment basis.

Measure Description of identification

TPVenule System ¼ venule, observer ¼ venule
FPVenule System ¼ venule, observer ¼ artery
TNVenule System ¼ artery, observer ¼ artery
FNVenule System ¼ artery, observer ¼ venule
TPArteriole System ¼ artery, observer ¼ artery
FPArteriole System ¼ artery, observer ¼ venule
TNArteriole System ¼ venule, observer ¼ venule
FNArteriole System ¼ venule, observer ¼ artery

Table 3
Performance metrics for vessel classification, calculated separately on a centreline pixel
basis and on a segment basis. Also, calculated separately for venules using TPVenule, FPVe-
nule, TNVenule, FNVenule and arterioles using TPArteriole, FPArteriole, TNArteriole, FNArteriole.

Measure Description

Sensitivity TP/(TP þ FN)
Specificity TN/(TN þ FP)
Positive Predictive Value TP/(TP þ FP)
Negative predictive Value TN/(TN þ FN)
Positive Likelihood Ratio Sensitivity/(1-Specificity)
Negative Likelihood Ratio (1-Senitivity)/Specificity
Accuracy (TP þ TN)/(TP þ FP þ TN þ FN)

Table 4
Performance of the proposed a/v classification method and the baseline method on UK
Biobank data, over entire images on a per pixel (centreline) basis prior to the segment
voting strategy.

Method Measure Arteriole Venule

Fraz [15] Sensitivity 72.98% 75.08%
Specificity 75.08% 72.98%
Accuracy 74.16% 74.16%

Proposed Sensitivity 82.71% 81.91%
Specificity 81.91% 82.71%
Accuracy 82.26% 82.26%
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proposed method was also evaluated on the publicly available DRIVE
[43] dataset (results included in Table 7). The methodology remained
unchanged; hence, the same CNN architecture was used. This was
enabled by resizing the DRIVE images from 565 � 584 pixels to
28
1464 � 1513 pixels to match the size of the circular field-of-view of the
UK Biobank images. To maximise the performance the CNN was
retrained on the DRIVE dataset (following manual labelling and data
augmentation), with the 40 DRIVE images being split into: 25 training
images, 5 validation images and 10 testing images. The need for vali-
dation data and the large training data requirements of deep learning
meant that it was not practical to use the original split of the DRIVE
dataset (20 training and 20 testing images). The parameters of the CNN at
epoch 9 was chosen as the final model. The classification of vessel seg-
ments into arterioles and venules is shown in Fig. 10.



Table 5
Performance of the proposed a/v classification method on UK Biobank data after the
segment voting strategy, over the entire image. Fraz [15] achieved an accuracy of 74.91%
(pixel basis) and an accuracy of 71.37% (segment basis) over the entire image.

Measure Pixel Segment

Arteriole Venule Arteriole Venule

Sensitivity 86.07% 87.67% 85.14% 85.32%
Specificity 87.67% 86.07% 85.32% 85.14%
Positive Predictive Value 84.56% 88.92% 81.23% 88.49%
Negative Predictive Value 88.92% 84.56% 88.49% 81.23%
Positive Likelihood Ratio 6.9815 6.2938 5.7987 5.7402
Negative Likelihood Ratio 0.1589 0.1432 0.1742 0.1725
Accuracy 86.97% 86.97% 85.24% 85.24%

Table 6
Performance of the proposed a/v classification method on UK Biobank data after the
segment voting strategy, over the ROI (0.5–1.0 optic disc diameters from the optic disc
boundary).

Measure Pixel Segment

Arteriole Venule Arteriole Venule

Sensitivity 86.64% 87.66% 86.90% 90.79%
Specificity 87.66% 86.64% 90.79% 86.90%
Positive Predictive Value 86.65% 87.65% 90.00% 87.90%
Negative Predictive Value 87.65% 86.65% 87.90% 90.00%
Positive Likelihood Ratio 7.0214 6.5590 9.4345 6.9287
Negative Likelihood Ratio 0.1525 0.1424 0.1443 0.1060
Accuracy 87.17% 87.17% 88.89% 88.89%

Fig. 9. Classification of arterioles and venules on UK Biobank data. (a) Original retinal i
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5. Discussion and conclusion

In this paper, we have presented a highly robust a/v classification
method based on the use of deep learning. This comprises of a con-
volutional neural network whose architecture contains six learned layers:
three convolutional and three fully-connected. Complex patterns were
automatically learnt from the data, avoiding the use of hand crafted
features. The method was developed for use on the UK Biobank retinal
image dataset and produces an accuracy of 86.97% (per pixel basis) for
a/v classification over the entire image. The performance increases to
87.17% (per pixel basis) when evaluated over a ROI, the increase is only
slight which indicates the performance is stable across the entire retina
(normally a significant increase is expected for the ROI). These figures
represent a high level of performance when considering the challenging
nature of the UK Biobank dataset in terms of the considerable variability
in image quality. Likelihood ratios (listed in Tables 3 and 4) were also
high and confirmed the high reliability of our proposed method.

The main contribution of this paper is the novel application of CNNs
to tackle a/v classification in retinal images. This sees the proposed CNN
labelling small image patches containing sections of individual vessels.
Human observers use the aspects of size, brightness and colour, relative
to neighbouring vessels and also track the routes of vessels to determine
the a/v status. Therefore, human observers would struggle to determine
the a/v status of a random selection of these image patches. Conven-
tionally CNN models are designed to classify images in which different
classes display apparent visual differences (e.g. diabetic retinopathy
grades, breed of dog etc.). Our method further demonstrates the capa-
bilities of CNNs, effectively classifying image patches when the differ-
ences are not so apparent. Thus, avoiding the need to identify
neighbouring vessels or correctly linking vessel segments which can be
mage. Classification results for the: (b) entire image and (c) ROI. (c) © UK Biobank.



Table 7
Reported results for other automated a/v classification methods and the results of the
proposed method on the publicly available DRIVE [43] dataset. OD ¼ optic disc,
ODD ¼ optic disc diameter, ODR ¼ optic disc radius. Saez [13] reports an arteriole and
venule sensitivity of 78.19% and 87.90% respectively. Niemeijer [17] reports an area
under the ROC curve of 0.84.

Method Dataset Year Accuracy Level Location

Kondermann
[11]

Private 2007 95.32% Pixel Within 3.0 ODD
from OD centre

Grisan [12] Private 2003 87.58% Segment 4 quadrants, 5
largest vessels in
each

Saez [13] Private 2012 – Segment 1.5–2.5 ODR from
OD centre

Vazquez [14] VICAVR 2013 87.68% Segment 1.5–3.0 ODR from
OD centre

Fraz [15] Private 2014 83% Pixel Entire image
Relan [16] DRIVE 2014 89.4% Segment 0.5–1.0 ODD from

OD boundary
Niemeijer
[17]

Private 2011 – Pixel 1–1.5 ODD from OD
centre

Xu [18] DRIVE 2017 92.3% Pixel Entire image
Dashtbozorg
[20]

DRIVE 2014 87.4% Pixel Entire image

Estrada [21] DRIVE 2015 91.7% Pixel Entire image
93.5% Segment Entire image

Proposed
method

DRIVE – 91.97% Pixel Entire image
91.27% Segment Entire image
91.99% Pixel 0.5–1.0 ODD from

OD boundary
90.77% Segment 0.5–1.0 ODD from

OD boundary
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unreliable when sections of the vasculature cannot be segmented due to
variability in the image quality of this dataset.

Significant improvements were demonstrated when comparing our
method to the baseline performance, increasing classification accuracy
from 74.16% to 82.26% (per pixel basis, entire image, prior to voting
strategy), an increase of 8.1%. The baseline performance implemented
themethod developed by Fraz [15] on the exact same retinal images from
UK Biobank data used in this paper. Thus, we can state the use of con-
volutional neural networks is more effective than the ensemble classifier
of bagged decision (used with colour features). Whilst Fraz [15] does not
present the highest accuracy in Table 7, it was the only other method
designed for use with images of variability quality from a large cohort
study (EPIC-Norfolk [40]) and therefore was a suitable choice as the
baseline method. Fraz [15] reports a classification accuracy of 83% for
images from the EPIC-Norfolk [40] dataset which contains retinal images
similar to UK Biobank dataset in respect to image quality. However, their
Fig. 10. Classification of arterioles and venules on DRIVE da
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evaluation process requires adjustment to be suitable for comparison
purposes because their method uses the right eyes of the participants as
training data and the left eyes of those same participants are used as
testing data.

Table 7 presents the reported results of other a/v classification
methods. Impressive results by Estrada [21] and Xu [18] were reported,
both achieved classification accuracies of þ90%. The results reported by
Kondermann [11] have been considerably boosted using manual vessel
segmentation, use of automatic segmentation sees the results deteriorate
by 10%. Amongst the datasets used by these methods [18,21] was the
publicly available DRIVE dataset [43], in which images are of good
quality with respect to not suffering from poor illumination, camera ar-
tefacts, obstruction from eyes lashes, etc. To enable a direct comparison
to these methods, our proposed methodology was also evaluated on the
DRIVE dataset, achieving a similar classification rate (þ90%) to the
state-of-the-art methods. This is impressive considering the training of
the CNN would have been limited by the small size of the DRIVE dataset
(despite the use of data augmentation). Also, whilst the DRIVE dataset
images are of good quality with respect to illumination etc., their low
image resolution of 565 � 584 pixels is another limiting factor.

Numerous CNN architectures in respect to the number of layers, the
type of layers, the number of neurons, the number of filters, etc. were
explored with their performances being compared on the validation set.
It was important to develop a model complex enough to tackle the
problem, without being overly complex to avoid overfitting; this was
ascertained by comparing the performance on the training set to that on
the validation set. Rotation and scaling were explored for data
augmentation to further enlarge the training set, this helped to combat
overfitting and allowed more complex models to be investigated. Despite
this, no improvements could be achieved, likely due to interpolation
overly altering pixel intensities which is problematic considering this
CNNwas designed to be very reactive to small pixel distribution patterns.
Other exploration included trying alternatives to the pre-processed image
patch inputs. This included original image patches, rotating the patch
according the vessel orientation and varying the size of the patch ac-
cording to the vessel width (with the patch being resized afterwards).

The future plan would be to further take advantage of the scalability
of deep learning. There is the potential to improve results by using more
data, multiple GPUs and more complex (deeper) models. We have data
available in terms of UK Biobank retinal images; our limitation is that
hand labelling those images is time-consuming. A possibility would be
crowdsourcing with the prerequisite of the individuals having an
ophthalmic background to ensure data of high quality. Producing a single
trained CNN that performs well on all retinal image datasets is another
aspect that warrants investigation. The CNN trained on UK Biobank data
ta. (a) Original retinal image. (b) Classification results.
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was not effective on the DRIVE dataset (despite resizing) and required
retraining on DRIVE data, although preliminary investigations show it to
be very effective on the similar EPIC-Norfolk [40] dataset. Finally, the
possibility of deep learning completely taking over the whole procedure
is also viable in the future, directly performing segmentation of the
background, arterioles, venules and the optic disc.

In conclusion, this paper has demonstrated a deep learning approach
for the automatic classification of arterioles and venules across the entire
retinal image for images of variable quality. The method was incorpo-
rated into QUARTZ and was used to process the entire UK Biobank retinal
image dataset with the output currently being used in epidemiolog-
ical studies.
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