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Abstract

Background Sensory changes due to aging or disease can impact brain tissue. This study
aims to investigate the link between glaucoma, a leading cause of blindness, and alterations
in brain connections.
MethodsWe analyzed diffusion MRI measurements of white matter tissue in a large group,
consisting of 905 glaucomapatients (aged 49-80) and 5292 healthy individuals (aged 45-80)
from the UK Biobank. Confounds due to group differences were mitigated by matching a
sub-sample of controls to glaucoma subjects. We compared classification of glaucoma
using convolutional neural networks (CNNs) focusing on the optic radiations, which are the
primary visual connection to the cortex, against those analyzing non-visual brain
connections. As a control, we evaluated the performance of regularized linear regression
models.
ResultsWe showed that CNNs using information from the optic radiations exhibited higher
accuracy in classifying subjects with glaucoma when contrasted with CNNs relying on
information from non-visual brain connections. Regularized linear regression models were
also tested, and showed significantly weaker classification performance. Additionally, the
CNN was unable to generalize to the classification of age-group or of age-related macular
degeneration.
Conclusions Our findings indicate a distinct and potentially non-linear signature of
glaucoma in the tissue properties of optic radiations. This study enhances our
understanding of howglaucoma affects brain tissue and opens avenues for further research
into how diseases that affect sensory input may also affect brain aging.

Glaucoma is the leading cause of irreversible blindness1. The disease causes
retinal ganglion cell (RGC) death, and consequently disconnection of the
transmission of visual information through the optic nerve to the lateral
geniculate nucleus (LGN). The optic radiations (OR) are the brain white
matter connections that further transmit the information fromtheLGNto the
visual cortex. Though the cells in the LGNwhose axons constitute theOR are
not directly affected by glaucoma, they are deprived of their sensory input. A

major question in sensory neuroscience, with significant clinical implications,
is whether such a change to the sensory periphery affects the properties of
central processing pathways2,3. Examining the properties of the OR in glau-
coma provides an opportunity to study the downstream effects of changes to
the sensory periphery on central brain connections. Alternatively, one of the
hypotheses about the effects of glaucoma on the white matter is that it
represents accelerated aging, at least within the retina4.
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Plain Language Summary

In this study, we explored the relationship
between glaucoma, themost common cause
of blindness, and changes within the brain.
We used data from diffusion MRI, a
measurement method which assesses the
properties of brain connections. We
examined 905 individuals with glaucoma
alongside 5292 healthy people. We refined
the test cohort to be closely matched in age,
sex, ethnicity, and socioeconomic
backgrounds. Theuseof deep learningneural
networks allowed accurate detection of
glaucoma by focusing on the tissue
properties of the optic radiations, a major
brain pathway that transmits visual
information, rather than other brain pathways
used for comparison. Our work provides
additional evidence that brain connections
may age differently based on varying sensory
inputs.
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Diffusion MRI (dMRI), which measures the randommotion of water
within brain tissue5, is a non-invasivemethod to reconstruct the trajectoryof
whitematter pathways, such as theOR, and to assess the physical properties
of the tissue within them. DMRI has previously been used to measure the
properties of white matter tissue in subjects with glaucoma, with studies
showing a range of different, and sometimes contradicting, effects6–11. In
several of these studies, changes were not specific to the visual pathways12–15,
suggesting wide-spread reorganization or systemic changes related to
glaucoma that also manifest in white matter changes.

Automated Fiber Quantification16 (AFQ) is an automated method
used to quantify tissue properties from dMRI data. In multi-shell dMRI
measurements, tissue properties can be quantified using the diffusional
kurtosis imaging model (DKI)17,18. Statistics derived from this model are
sensitive to biological changes, such as aging anddisease, and, when they are
used in concert, can help constrain the interpretations of the underlying
biological processes18–21. AFQ calculates one-dimensional tract profiles of
white matter tissue properties dervied from DKI, such as mean diffusivity
(MD), whichmeasures averagemolecularmotion of watermolecules and is
sensitive to tissue density; fractional anisotropy (FA), which measures the
directional selectivity of water molecule diffusion and is sensitive to
myelination19, but also to axon fiber coherence and crossing of multiple
fibers within a voxel; and mean kurtosis (MK), which measures the non-
Gaussianity of water diffusion and is sensitive to tissue complexity17.

A powerful paradigm for detecting differences between groups—e.g.,
subjects with glaucoma and a control group—is to create machine learning
(ML) systems that classify these groups in a held-out dataset. ML algo-
rithms, and particularly convolutional neural networks (CNNs)22, can
capitalize on high-dimensional and/or non-linear patterns in data, such as
the complex configuration of tissue properties along the length of a brain
tract, to discriminate between different categories of individuals. They can
bemore accurate thanothermodels, overcoming significant variationacross
individuals, but they also require large amounts of data. The UK Biobank
(UKBB) dataset is the largest dMRI dataset to date with many thousands of
subjects23. The large sample size of the UKBB provides an unprecedented
opportunity to study nuanced and potentially non-linear correspondence
between glaucoma and white matter tissue properties with ML methods.
The large dataset can also be used to mitigate confounding effects of vari-
ables that are correlated with a disease state (for example, glaucoma is more
prevalent in older individuals) using statistical matching24.

In the present study, we use data from the UKBB to fit CNNs that
classify individualswithglaucomabasedon the tissueproperties of theirOR,
and twoother control tracts.Wedelineate these tracts automatically, in each
individual, using an open-source software that we have developed25, which
implements AFQ in the Python programming language (https://
yeatmanlab.github.io/pyAFQ). To mitigate confounds because of biases in
the characteristics of subjects with glaucoma, we create a sub-sample of
healthy subjects with closely matched age, sex, ethnicity, and socio-
economic background. We find that the CNNs trained on the ORs exhibit
higher accuracy in classifying subjects with glaucomawhen contrasted with
CNNs trained on control tracts. To test the accelerated aging hypothesis
about the effects of glaucoma on the white matter, we also assess general-
ization of the CNN trained to classify glaucoma in classifying subjects from
different age groups. In addition, we test whether the effects of glaucoma on
OR tissue properties generalize to other retinal diseases, by assessing whe-
ther theCNN trained to classify glaucoma could also classifyUKBB subjects
with age-related macular degeneration (AMD). We find that CNNs do not
generalize across classification tasks. Taken together, these results suggest
potentially non-linear and glaucoma-specific differences in OR tissue
properties between subjects with and without glaucoma, that do not
resemble accelerated aging.

Methods
Data access
Data was obtained through the UKBiobank health research program23. De-
identified Magnetic Resonance Imaging (MRI) and health data were

downloaded from the UK Biobank repository and our study, which did not
involve human subjects research, was exempt from IRB approval. The UK
Biobank study itself was approved by an IRB under 11/NW/0382. Informed
consentwas obtained fromallUKBiobankparticipantsduring an initial two
and a half hour recruitment visit, which included broad consent for use of
their anonymized samples in a range of different health-related research
(see23 for details). The UK Biobank’s research ethics committee approval
means that researchers wishing to use the resource do not need separate
ethics approval, unless re-contact with participants is required (which is
irrelevant in our case). Analysis of de-identified human data is not con-
sidered human subject research by the University of Washington Institu-
tional Review Board and does not require additional approval and an
exemption was determined.

Datasets and statistical matching
From the available data, we created several distinct datasets, using statistical
matching to create datasets where bias due to age and other factors is
negligible. Tobe included in anyof these, studyparticipantsmust have had a
dMRI data acquisition and a final visual acuity logMAR (log of the Mini-
mum Angle of Resolution) of less than or equal to 0.3 if measured (from
UKBB data field 5201). We re-ran all analyses without this exclusion cri-
terion, and found the same results.

Dataset A was composed of the following sub-samples of the
UKBB data:
1. Glaucoma sub-sample: we first selected 905 subjects classified as

having glaucoma (in at least one eye) by theUKBiobank’s Assessment
Center Environment (ACE) touchscreen question: “Which eye(s) are
affected by glaucoma" (see UKBB data field 6119).

2. Control sub-sample: We selected 5292 UKBB subjects for a control
pool23,26,27. These subjects answered “no eye problems/disorders" to the
ACE touchscreen question: “Has a doctor told you that youhave any of
the following problems with your eyes? (You can select more than one
answer)" (see UKBB data field 6148).

To reduce bias from age and other potential confounders, we used
statistical matching24 to create a “matched dataset". We calculated the
Mahalanobis distance28 between the confounders of all pairs of glaucoma
and control subjects. The confounders29weusedwere age, sex, ethnicity, and
the Townsend deprivation index (TDI)30. We used the ‘linear_-
sum_assignment’ method from Scipy 1.8.031 to match test and control
subjects such that the total Mahalanobis distance between them is mini-
mized. This is a modified implementation of the Jonker-Volgenant
algorithm32. We then thresholded the matched dataset, only keeping mat-
ched subjects with a Mahalanobis distance of 0.3 or less.

In the full sample, glaucoma subjects tend to be older (μ ± σ for glau-
coma: 68 ± 7; control: 62 ± 7). After Mahalanobis distance matching28, we
created the matched dataset A with 856 glaucoma subjects and 856 control
subjects of similar ages (Supplementary Fig. S1b; glaucoma: 68 ± 6, control:
68 ± 6). While Supplementary Fig. S1 only shows age matching, we
simultaneously matched on sex, ethnicity, and TDI30, with similar results
(Supplementary Fig. S2).

After matching was concluded, we divided the resulting dataset—
dataset A—into two groups: train (80%) and test (20%). From the train
set, 20% was set aside as a validation set for hyperparameter selection.
So, in total, the dataset is apportioned as follows: 64% for the train set,
20% for the test set, and 16% for the validation set.Matched control and
glaucoma subjects were assigned into these groups in tandem. All
decisions about model architecture and hyperparameters were
made using dataset A training and validation sets. The results shown
in this paper are from test sets, which were not viewed until final
determinations about model architecture and hyperparameters
were made.

To additionally test generalization of the glaucoma model, we con-
structed two additional test datasets. These datasets used control subjects
that were not included in the glaucoma-matched pool (N = 4456):
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1. AMD dataset (dataset A.1): Subjects were marked as having AMD
based on the ACE touchscreen question in UKBB data (field 6148)
describedabove.A set ofmatchedcontrolswas selectedusing statistical
matching on the same criteria as above. This created a pool of 81
participants, out of which 78 matched pairs were found.

2. Agingdataset (datasetA.2): 70 year-old subjectswere selected from the
control pool and were matched to other subjects in the control pool,
with the matching modified to match to subjects 10 years younger, in
addition to the other criteria used above. This dataset had 166 exactly
70-year old subjects and 166 approximately 60-year old subjects.

Another dataset -dataset B - was sub-sampled from theUKBB to train
age-group classification models. Here, we selected subjects with ages 70–79
(N = 962) from the control sub-sample. These were matched to other
controls with thematchingmodified tomatch to subjects 10 years younger,
in addition to the other criteria used above, to create 819matchedpairs. This
datasetwas also divided into train, test, and cross-validation the sameway as
dataset A.

To test the generalization from age-group classification models, we
constructed two additional test datasets. Controls were taken from a control
pool where participants selected for the dataset used to train the age-group
classification models were removed (N = 4473):
1. Glaucoma (datasetB.1). In this dataset, onlyparticipants agedbetween

60-64 with glaucoma were included. This created a pool of 147
participants, out of which 142 matched pairs were found.

2. AMD (dataset B.2). Given lower prevalence of AMD in the overall
dataset, we did not use an age inclusion criterion. This created a pool of
81 participants, out of which 80 matched pairs were found.

Though 27.6% of the subjects used in dataset A are in dataset B, there
was no overlap between the training data and the test data in either of these
datasets.

MRI acquisition
We used preprocessed dMRI provided through the UKBB. The acquisition
protocol is already described elsewhere27. Briefly, dMRImeasurements were
conducted with a spatial resolution of 2-by-2-by-2 mm3, TE/TR = 14.92/
3600 msec. With anterior-to-posterior phase encoding, there are five
volumes with no diffusion weighting (b = 0), and 50 volumes each with
b=1000 s/mm2 and b=2000 s/mm2. An additional 6 b=0 volumes were
acquired with posterior-to-anterior phase encoding direction for EPI dis-
tortion correction. Preprocessing is also described elsewhere26. Briefly, the
FSL “eddy" software was used to correct for headmotion and eddy currents,
including correction of outlier slices. Gradient distortion correction was
performed and non-linear registration using FNIRT was calculated. The
FNIRT mapping was also used to map the individual subjects data to the
MNI template.

Automated fiber quantification
AFQ16 is an analysis pipeline that automatically delineates major white
matter pathways and quantifies the properties of white matter tissue along
the length of these major pathways. We used a Python-based open-source
implementation of this pipeline (pyAFQ; https://github.com/yeatmanlab/
pyAFQ)25 to extract the tissue properties ofORsub-bundles and two control
bundles - the corticospinal tract (CST) and the uncinate fasciculus (UNC) -
that are not a part of the visual system. Using AFQ, white matter pathways
were identified from a candidate set of streamlines based on anatomical
landmarks: inclusion, exclusion, and endpoint regions of interest (ROIs)
that were based on the known trajectory of the pathways (e.g., OR). These
ROIs were transformed into each subject’s diffusionMRI coordinate frame
using the FNIRT non-linear warp provided by UKBB. For UNC and CST,
we also used a population-based probabilistic atlas33. We seeded a GPU-
accelerated residual bootstrap tractography algorithm34 with 64 seeds uni-
formly distributed in the voxels of the inclusion ROIs to generate candidate
streamlineswhichmay follow the trajectory of theOR in each subject’s data.

These candidate streamlines were filtered to recognize the OR with these
conditions: streamlines (1) do not pass through the sagittal midline of the
brain; (2) have at least one point that is within 3mm of both of the inclusion
ROIs; (3) do not have any point that is within 3mm from the exclusion ROI;
(4) terminate within 3mm of the two endpoint ROIs (one in the thalamus
and the other in V1)35,36. They were further filtered using the standard AFQ
cleaning to remove outliers in length and trajectory16. Control bundles were
generated using the same pipeline as the OR, using inclusion ROIs16 and
excluding streamlines that cross the midline.

Tissue properties were calculated using the diffusional kurtosis model
implemented in DIPY18,37. The tract profiles were computed at 100 points
along each bundle, however we excluded the first and last 10 nodes, because
their measured properties are more strongly influenced by partial volume
effects with the gray matter. Further visualizations and analyses with
machine learning used these one dimensional tract profiles.

Machine learning
We trained 1D convolutional residual neural networks on the tract profiles
from the optic radiation and two control bundles (CST, UNC) to predict
whether a subject has glaucoma. The network architecture is identical to the
one in Fawaz et al.38. Briefly, the network consisted of three residual blocks39,
each containing a series of 1D convolutional layers with kernel sizes of 8, 5,
and 3, interspersed with batch normalization and ReLU activation layers.
Within each block, therewas a residual connection. The residual connection
involved connecting the input of a residual block to the input of its sub-
sequent layer using an addition operation. The number of filters in each
blockwas 64, then 128, then 128filters. The network is implemented as part
of an open-source software package for analysis of tractometry data that we
develop (https://yeatmanlab.github.io/AFQ-Insight)40.

We trained one network per bundle for a total of three networks. The
middle 80 nodes out of the 100 from the tract profiles were used. Thus the
input to these networks consisted of 1D tract profiles of length 80 and with
six channels, one for each tissue property (FA, MD, and MK) and each
hemisphere (left and right). Tissue properties were normalized by con-
verting to Z-scores before use in the neural network. In subjects where some
bundles were not found, missing bundles were imputed using the mean
profile of that bundle for each tissue property, separately in the train and test
data41.

Independently, we trained 3 L2-regularized logistic regression models
on the bundles. We used the liblinear solver in Scikit Learn 1.0.0 to fit these
models42,43. To reduce overfitting seen in the validation set, we only used
every other node from the 20th to 78th node out of 100 nodes before testing.
We also used the validation set to determine the level of regularization.

We applied the networks trained on dataset A to datasets A.1 and A.2.
Finally, we trained three more neural networks of the same architecture on
the same bundles, using dataset B. We also tested its generalizability on its
corresponding B.1 and B.2 datasets.

The results of the CNNs and logistic regression are compared using
areas under curve (AUC) from a receiver operating characteristic (ROC)
curve44. Depending on the curve, we asked one of two questions: (1) For the
visual system tests (datasets A and B), are the OR AUCs significantly dif-
ferent from the control AUCs, and (2) for the visual system tests and the
generalization tests (datasets A.1, A.2, B.1, B.2), are any of the AUCs sig-
nificantly above chance. For question 1, we compared the OR AUC to each
control bundle. We calculated a p-value from the DeLong test44 and then
corrected for the two comparisons using the False Discovery Rate (FDR)
p-value correction45. We called the AUCs significantly different if the cor-
rected p-value is below 0.05. For question 2, we used the variance calculated
by theDeLong formula44 tomake a 95% confidence interval.We applied the
Bonferroni correction to the confidence intervals46 to correct for our testing
of three different bundles. If the corrected confidence intervals did not
include an AUC of 0.5, we called the AUC significant. The more con-
servative Bonferroni correction is used to correct for multiple comparisons
in this case, because it is applied to confidence intervals, rather than to p-
values.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
In dataset A (glaucoma subjects statistically matched to controls, see
“Methods” formore details), the glaucoma subjects have lowerMK than the
control subjects in their optic radiations across the bundle. They have lower
FA and higher MD in the posterior OR, but slightly higher FA and lower
MD in the anteriorOR. This is shown in the LeftORcolumnof Fig. 1, where
the 95% confidence intervals between the orange and blue lines do not
overlap. With this large sample size, even the small differences in the mean
shown here are statistically significant. However, while the mean tract
profiles differ significantly, the underlying distributions are highly over-
lapping, as shown by the thin interquartile range lines. Additionally, there
are significantly differentmean tissue properties in the uncinate (UNC) and
corticospinal tract (CST). For example, there is a statistically significant
difference in MK at position 35 in the left CST, and in FA at position 40 in
the left UNC. In summary, differences in mean tract profiles are small (if
statistically significant) and are not specific to the visual system. The same
results are found in the right hemisphere (Supplementary Fig. S3).

Despite the high overlap between the distributions, CNNs trained on
the tissue properties of white matter bundles in dataset A can classify par-
ticipantswith glaucomaandcontrolswith anareaunder curve (AUC) that is
greater than chance (Fig. 2). However, the only AUC that shows a statisti-
cally significant difference from chance is from the OR tissue properties

(AUC = 0.69). We also find that the CNN trained on OR tissue properties
has a significantly higher AUC than a CNN trained on CST (DeLong’s test:
p = 0.0028 ) and a CNN trained on UNC (p = 0.0002). This indicates that
differences in tissue properties between participants with glaucoma and
controls are specific to theOR, andmuchweaker ornon-existant in thenon-
visual control bundles.

Not all bundles were found in each subject. We calculated that, for
dataset A, the extant bundle percentage for each bundle was: left UNC
100.0%, rightUNC100.0%, left CST 99.8%, rightCST 99.8%, leftOR95.8%,
right OR 94.9% (Supplementary Fig. S4). Note that the OR are found less
often than the control bundles. This is because its high curvature makes it
difficult to track. To test whether the results depend on these differences in
missing data, we created equivalent ROC curves using only test subjects
where all bundles are found, which shows similar effects (Supplemen-
tary Fig. S5).

As another control, we used a model of substantially less complexity
than a CNN.We trained three logistic ridge regression models (Fig. 3). We
used all three tissue properties (FA, MD, MK) from 30 positions along the
core white matter from each hemisphere, for a total of 180 features (the
choice of these features is elaborated upon in theMachine Learning section
of the Methods). If regression models can predict glaucoma with an accu-
racy comparable toCNNs, this would indicate that the relationship between
glaucoma and the tissue properties can be captured by a linear model and
does not require the use of a CNN. Again, only the AUC from the model
trainedon theOR(0.63) is significantlydifferent fromchance. TheORAUC
is significantly different from the UNC AUC (p = 0.0431), but just barely,

Fig. 1 | Tract profiles in individuals with glaucoma and healthy controls. Thick
lines show the mean tract profiles in the left hemisphere of all bundle and tissue
property combinations. The medium-thickness lines hugging the thick lines show
the 95% confidence interval. The thin lines show interquartile ranges (n = 895 in

each group). Positions in OR are from anterior to posterior (A→ P), in the corti-
cospinal tract (CST) are from inferior to superior (I→ S), and in the uncinate (UNC)
from posterior to anterior (P→A).
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and it is not significantly difference from the CST AUC. Additionally, we
found that the OR AUC from the CNN (Fig. 2), is significantly higher than
theORAUCfromthe logistic regression, thoughonlymarginally (DeLong’s
test: p = 0.0303). For more context on this marginal difference, we have
provided the confusion matrices for these two models in Supplementary
Table S1. The higherAUCof theORCNNcould be because theCNNbetter
captures the complexity of the relationshipbetweenglaucomaandORtissue
properties. However, it is important to note that both of these AUC values
are considered weak47.

To test the generalizationof ourmain results,we applied the glaucoma-
trainednetwork todatasets labeled according toAMDandage (datasetsA.1,
A.2, see “Methods”). We found no significant AUCs (no generalization;
Fig. 4). Additionally, we trained three CNNs (one per bundle; the same
bundles as used previously) on dataset B (70–79 year olds, with matched
controls 10 years younger, seeMethods) to classify age-group (70 vs. 60 year
old). TheAUCs for this network in the age-classification task are all between
0.61 and 0.64 (OR: 0.63, CST: 0.61, UNC: 0.64). However, none of the
bundles have AUC significantly different from each other (p>0.05 for all
comparisonsusing theDeLong’s test), demonstrating that, unlike glaucoma,
the tissue properties of the UNC and CST are just as informative for age

prediction as the tissue properties of the OR. Finally, we used the age-
classification network to predict glaucoma and AMD (datasets B.1, B.2, see
“Methods”). Herewe found no significantAUCs in the glaucoma set (AUC,
OR: 0.50; CST: 0.50; UNC: 0.53), nor in the AMD set (AUC, OR: 0.43; CST:
0.43; UNC: 0.42).

Discussion
To study the effects of glaucoma on tissue properties in the white matter of
the optic radiations, we used a large dataset of diffusionMRImeasurements
of participants with glaucoma from the UK Biobank23, together with
combinatorial methods to generate tightly-matched samples, automated
methods for delineation of white matter tracts, and machine learning
techniques. Previous research on glaucoma has included samples with a
large diversity of characteristics6–11. We sub-sampled from the UK Biobank
dataset to create a group of controls that closely matched 856 participants
with glaucoma in age, sex, and socioeconomic status, focusing only on these
856 pairs of participants for our analysis. This approach allowed us to
mitigate potential sampling biases that could confound the conclusions
about how common the effects of glaucoma in the white matter are. Even
after some participants are excluded to provide for this tight matching, the

Fig. 2 | Receiver operating characteristic (ROC) curves for prediction of glaucoma
using the three neural networks. Each were trained using three tissue properties
from both hemispheres, but each from a different bundle. ROC curves compare true
positive rate (TPR) to false positive rate (FPR) at various thresholds. Area under

curve (AUC) is the summary of accuracy across all classification thresholds.
Therefore, ROC/AUCmetrics are invariant to the choice of decision criterion. Note
that the OR in dark red have higher AUC than the control bundles.

Fig. 3 | ROC curves for the prediction of glaucoma using logistic regression.Curves are colored by the bundle used for the classification. TheORAUC is lower when using
logistic regression rather than the convolutional neural network (see Fig. 2 for comparison). As a result, the control bundles and OR have more similar AUC.
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sample is approximately an order of magnitude larger than that of any
previous study using dMRI in glaucoma.We foundonly small differences in
tissue properties in the optic radiations, as well as in non-visual control
tracts, with large overlaps in the distributions between participants with
glaucoma and the tightly-matched control group. However, using con-
volutional neural networks, we found that classification of glaucoma par-
ticipants is possible using the optic radiation with an AUC of 0.69. This is
significantly higher than theAUCs of the non-visual control bundles, which
themselves were not significantly different from chance. This provides
evidence of specific effects of glaucoma detected in the visual white matter.

To test whether the effects of glaucoma on the white matter of the OR
represent accelerated aging4, We used the glaucoma-classification CNN to
differentiate between subjects with a 10-year age gap (but matched on sex
and socioeconomic status). We chose the ages 60 and 70, based on our
previous observations that this is an age difference at which OR tissue
properties change substantially48, and also the age at which glaucoma risk
increases substantially in the UKBB sample49. Nevertheless, the CNN
trained to classify glaucoma did no better than chance in classifying subjects
from different age groups. Furthermore, a CNN trained to perform the age
classification task could not distinguish participants with glaucoma from
their matched controls better than chance. This suggests that the features of
theOR that are correlatedwithglaucoma status are different from those that

are correlated with the normal process of aging. In previous work with a
much larger sample of UKBB subjects ages 45-81 (n = 5382) we found that
healthy aging is associated with substantial decreases in FA and MK and
increases inMD48. In contrast, the lower values of FA,MK andMD that are
indicative of glaucoma are consistent with more complex tissue config-
urations without substantial demylenation or loss of tissue density18.
Nevertheless, diffusion-derived tissue properties are sensitive to a variety of
confounds. For example, FA is sensitive to demyelination19, but also to the
presence of crossing fibers50, so it needs to be interpreted with caution.

We used a linear model—regularized logistic regression—and it was
able to classify glaucoma with an AUC of 0.63. This AUC is significantly
smaller than the AUC found when using the ORCNN to classify glaucoma
(0.69). However, the p value (p = 0.0303) is proximate to the conventional
threshold of 0.05, indicating marginal significance. The practical implica-
tions of this marginal increase in AUC are limited. ML algorithms have
come under some criticism in their use in biomedical application, due to the
“black box" nature of their operations, which can sometimes make them
inscrutable51. Even if the OR CNN exhibited better performance in glau-
comaclassification, its results are less interpretable. In comparison, although
the the logistic regressionmodel would bemore interpretable, it has a lower
AUC for OR. The small significant difference between deep learning and
linear models is also consistent with our recent findings regarding

Fig. 4 | Generarlization to other tasks. ROC curves for prediction of AMD (a) and
age (b) using the CNN trained on the glaucoma dataset. Classification performance
did not significantly differ from chance for any of the networks. This demonstrates

the inability of a network trained to distinguish subjects based on glaucoma status to
generalize to age or AMD.
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differences between linear models and deep learning networks in modeling
brain white matter development in a large sample of children and
adolescents52.

Differences between theORof participants with glaucoma and healthy
controls could arise for many reasons. One hypothesis is that the altered
visual input due to the disease causes reorganizationof the tissue responsible
for downstreamprocessing steps53–55. These downstream changes could also
be related to transsynaptic degeneration through the LGN that can be
measured through changes to the OR tissue properties. Indeed, previous
research found that participants with glaucoma have significantly reduced
LGN volumes56. While altered visual input may be a cause of these differ-
ences, we also showed that the glaucoma-trained CNN does not generalize
to another retinal disease that causes altered visual input, age-related
macular degeneration (AMD). The prevalence of AMD is much lower, and
there is not enough data in the UKBB dataset to train a CNN using statis-
tically matched AMD subjects, so we cannot rule out the possibility that an
AMD-trained CNN would generalize to glaucoma. Moreover, the AMD
sample is mostly composed of mild cases of AMD (with visual acuity that is
close to intact), and it is possible that generalization would increase in a
sample with more profound cases of AMD-related visual loss. Another
possibility is that the ML algorithms may be specifically focusing on a sub-
group of individuals with glaucoma who also have changes in the optic
radiations and/or theLGNthat lead toa retrogradeoptic nervedegeneration
that is ascribed to glaucoma. In this case, the change to visual inputs is not
the main driver of changes in the white matter.

Another set of hypotheses not addressed in the present study could
relate glaucoma to Alzheimer’s Disease (AD). AD and glaucoma are linked
through their high levels of co-occurence, as well as through biochemical
and pathophysiological similarities, and overlapping genetic mechanisms57.
Therefore, it is an intriguingpossibility that a glaucoma-trainedCNNwould
generalize toAD, andviceversa.Unfortunately, theUKBBdoesnot yet have
a large enough sample of participants with dMRI measurement and a
diagnosis of AD to test this question. At the same time, it is possible that
comorbidities such as undiagnosedAD could be responsible for some of the
differences between the glaucoma and control subjects. To further under-
stand the relationship between glaucoma andAD, futurework should apply
the techniques described in this paper to other large datasets where these
diseases are more prevalent, or to combine multiple, large datasets.

Importantly, the present study is purely correlational, and though we
have accounted for some of the obvious confounding factors (such as age),
we may have not accounted for all of the differences between participants
with glaucoma and controls. For example, in previous work, we found that
cardiovascular fitness variables are important features in classifying parti-
cipants with glaucoma in the UK Biobank dataset49. In this dataset, we tried
matchingoncardiovascular variables but found that theydidnot changeour
results (not shown). Still, the effectsmeasured in theORanddelineatedwith
the CNN analysis could still reflect common underlying causes rather than
direct effects of glaucoma on the tissue properties of the OR. Future studies
could focus on other risk factors, such as a history of smoking, diabetes, high
blood pressure, elevated intraocular pressure, or genetics, which might
explain these differences.

Another limitation of the present study is that glaucoma and AMD
status were determined based on self-report. This raises concerns that some
of the individuals identified as having glaucomahave another eye disease, or
no eye disease (false positives) and that there may be individuals with
glaucoma among the controls (false negatives). One way in which false
positives could affect our results is by the inclusion of people with other
sources of sight impairments in the glaucoma group, and some of these
could be impairments with a source directly in the OR. However, in our
previous work with the UK Biobank dataset, we verified that self-report is
highly congruent with ICD-10 diagnostic codes of glaucoma and that there
was high repeatability of self-report among participants who reported
glaucoma49. Furthermore, a previous study that examined glaucoma in the
UK Biobank dataset58 verified that the distributional properties of self-
reported glaucomamatch the distributional properties of glaucoma subjects

in several other population studies59–61. Even if one assumes that glaucoma
self-report is rather accurate, within the glaucoma group there will be var-
iations in disease sub-type (i.e., open-angle, normal pressure, etc.), along
with variations in disease severity, duration and received treatments. Such a
generalization could mask the differences in presentation across different
types and stages of the disease. Future research to develop algorithms that
can accurately classify the stage and type of the disease, providing evenmore
fine-grained information about the link between retinal disease and brain
tissue properties, will require such information. The presence of additional
common eye disorders (e.g., high myopia, cataract) in the sample will also
add variance that cannot be accounted for. The same would hold for the
healthy controls, i.e., those who did no report the presence of glaucoma, but
who well could suffer from other unreported diseases that could affect the
retina and the visual pathways (e.g., multiple sclerosis, diabetes). These
issues all highlight the limitations of the prospective approach used here.

Finally, there are limitations associated with the MRI methodology
used. Due to the tract’s high curvature, narrow sections, and intersections
with other tracts, someORwere not detected in some subjects. Additionally,
dMRI is unable to differentiate feedforward and feedback projectionswithin
the OR, so our conclusions encompass both.

Future work could improve each step of our analysis pipeline. In the
present study we only considered the OR and not the rest of the retino-
geniculate visual pathway. This is because the optic radiations are larger and
easier to track than the smaller optic tract and optic nerves. A useful
extension of this work would be to develop an algorithm which can
recognize the optic tract reliably, automatically, and quickly, so that it can be
deployed on thousands of subjects62. We used DKI17,18 to model the tissue
properties within the OR. This model augments the diffusion tensor ima-
ging (DTI) model, removing the simplifying assumption of Gaussian dif-
fusion. But, both of these models are phenomenological 63,64 and other
modelsmay provide amoremechanistic view of tissue properties that differ
in participants with glaucoma. For example, the neurite orientation dis-
persion anddensity imaging (NODDI)65model, which explains the signal as
the combination of different biophysically-interpretable tissue compart-
ments. Future studies with UK Biobank and with other datasets could
expand on our findings using NODDI and other modeling techniques.
Oncebundleswere recognized and tract profileswere derived,weuseda1-D
convolutional residual neural network to analyze their tissue properties.
However, there are a variety of other neural network architectures that could
be used52. Another relevant framework that could be applied to case-control
studies is a normative modeling approach66. Normative modeling that uses
deep learning neural networks has already previously been applied to tract
profile data67. Normative modeling approches may also better handle the
potential heterogeneity of glaucoma’s effects on the white matter. Inte-
grating more clinical information is another way to handle heterogeneity.
The UK Biobank contains a plethora of clinical information that may be
useful to consider as potential inclusion or exclusion criteria, or as con-
founders for statistical matching. For example optical coherence tomo-
graphy (OCT) scans were collected in some subjects in the UK Biobank
study. OCT scans could be compared with glaucoma status and white
matter tissue properties as a mediator. It has already been shown that deep
learning can be applied to OCT data to predict glaucoma49 and even age-
related macular degeneration68.

In summary, we used neural networks to determine that there is a
complex relationship between the tissue properties of the optic radiations
and glaucoma. These differences persist even when participants with
glaucoma are closely matched to controls.We did not find this relationship
in non-visual control bundles. This relationship is not reflective of an
accelerated aging process, but may instead reflect a change in the visual
input and subsequent reorganization of the visual system, but it does not
seem to generalize to other retinal disorders (AMD). Our study contributes
to a growing body of research that utilizes CNNs to enhance biomedical
imaging techniques. Importantly, the application of CNNs allows for the
detection of subtle and non-linear effects that may otherwise go unnoticed.
Although the presentwork is a novel application of deep learning in thefield
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of diffusion MRI, such techniques have already been used successfully in
other fields, such as ophthalmology. In particular, there has been con-
siderable success using retinal fundus images and machine learning to
classify glaucoma49,69. Results from diffusion MRI serve to complement the
previousfindings by showing that brain and eye health are intricately linked.
As the techniques used here are further developed, they may hold promise
for future clinical applications70, for example, as neural networks are used to
establish baseline or normative models for different disease states71.

Data availability
This study uses publicly available data from the UK Biobank. More infor-
mation on the data and access can be found here: https://www.ukbiobank.
ac.uk/enable-your-research. Where possible, we have also shared aggregate
data and trained models are available at https://github.com/36000/glauc_
paper_scripts72. However, some figures are generated directly from indivi-
dual particpants’data. This data cannot bemadepublicly available andmust
be accessed through the UK Biobank. All other data are available from the
corresponding author on reasonable request.

Code availability
All code to reproduce the analysis and the figures is available at https://
github.com/36000/glauc_paper_scripts72.

Received: 8 February 2023; Accepted: 28 March 2024;

References
1. Tham, Y.-C. et al. Global prevalence of glaucoma and projections of

glaucoma burden through 2040: a systematic review and meta-
analysis. Ophthalmology 121, 2081–2090 (2014).

2. Merabet, L. B. & Pascual-Leone, A. Neural reorganization following
sensory loss: The opportunity of change. Nat. Rev. Neurosci. 11,
44–52 (2010).

3. Bavelier, D. & Neville, H. J. Cross-modal plasticity: where and how?
Nat. Rev. Neurosci. 3, 443–452 (2002).

4. Caprioli, J. Glaucoma: a disease of early cellular senescence. Invest.
Ophthalmol. Vis. Sci. 54, ORSF60–7 (2013).

5. Wandell, B. A. Clarifying human white matter. Annu. Rev. Neurosci.
39, 103–128 (2016).

6. Haykal, S., Jansonius,N.M.&Cornelissen, F.W. Progressionof visual
pathway degeneration in primary Open-Angle glaucoma: A
longitudinal study. Front. Hum. Neurosci. 15, 630898 (2021).

7. Hanekamp, S. et al. White matter alterations in glaucoma and
monocular blindness differ outside the visual system. Sci. Rep. 11,
6866 (2021).

8. Mendoza, M., Shotbolt, M., Faiq, M. A., Parra, C. & Chan, K. C.
Advanced diffusion MRI of the visual system in glaucoma: From
experimental animal models to humans. Biology 11, 454
(2022).

9. Bolacchi, F. et al. Differences between Proximal versus Distal
Intraorbital Optic Nerve Diffusion Tensor Magnetic Resonance
ImagingProperties in GlaucomaPatients. Invest Ophthalmol. Vis. Sci.
53, 4191–4196 (2012).

10. Garaci, F. G. et al. Optic nerve and optic radiation neurodegeneration
in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor
MR imaging. Radiology 252, 496–501 (2009).

11. Nuzzi, R., Dallorto, L. & Rolle, T. Changes of visual pathway and brain
connectivity in glaucoma: A systematic review. Front. Neurosci. 12,
363 (2018).

12. Boucard, C. C. et al. Changes in cortical grey matter density
associated with long-standing retinal visual field defects. Brain 132,
1898–1906 (2009).

13. Frezzotti, P., Giorgio, A., Toto, F., De Leucio, A. & De Stefano, N. Early
changes of brain connectivity in primary open angle glaucoma. Hum.
Brain Mapp. 37, 4581–4596 (2016).

14. Giorgio, A., Zhang, J., Costantino, F., De Stefano, N. & Frezzotti, P.
Diffuse brain damage in normal tension glaucoma.Hum. Brain Mapp.
39, 532–541 (2018).

15. Zikou, A. K. et al. Voxel-based morphometry and diffusion tensor
imaging of the optic pathway in primary open-angle glaucoma: a
preliminary study. AJNR Am. J. Neuroradiol. 33, 128–134 (2012).

16. Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A. &
Feldman, H. M. Tract profiles of white matter properties: Automating
fiber-tract quantification. PLoS One 7, e49790 (2012).

17. Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H. & Kaczynski, K.
Diffusional kurtosis imaging: the quantification of non-gaussian water
diffusion by means of magnetic resonance imaging.Magn. Reson.
Med. 53, 1432–1440 (2005).

18. Henriques, R. N. et al. Diffusional kurtosis imaging in the diffusion
imaging in python project. Front. Hum. Neurosci. 15, 675433 (2021).

19. Beaulieu,C., Does,M.D., Snyder, R. E. &Allen, P. S.Changes inwater
diffusion due to wallerian degeneration in peripheral nerve.Magn.
Reson. Med. 36, 627–631 (1996).

20. Struyfs, H. et al. Diffusion kurtosis imaging: A possibleMRI biomarker
for AD diagnosis? J. Alzheimers. Dis. 48, 937–948 (2015).

21. Hui, E. S. et al. Stroke assessment with diffusional kurtosis imaging.
Stroke 43, 2968–2973 (2012).

22. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

23. Sudlow, C. et al. UK biobank: an open access resource for identifying
the causesof awide rangeof complexdiseasesofmiddle andold age.
PLoS Med. 12, e1001779 (2015).

24. Rubin, D. B. Matching to remove bias in observational studies.
Biometrics 29, 159–183 (1973).

25. Kruper, J. et al. Evaluating the Reliability of HumanBrainWhiteMatter
Tractometry. Apert Neuro. 1, 1–25 (2021).

26. Alfaro-Almagro, F. et al. Image processing and Quality Control for the
first 10,000 brain imaging datasets from UK Biobank. Neuroimage
166, 400–424 (2018).

27. Miller, K. L. et al. Multimodal population brain imaging in the UK
Biobank prospective epidemiological study. Nat. Neurosci. 19,
1523–1536 (2016).

28. Mahalanobis, P.C. On the Generalized Distance in Statistics.
Proceedings of the National Institute of Science of India 2,
49–55 (1936).

29. Shweikh, Y. et al. Measures of socioeconomic status and self-
reported glaucoma in the UK biobank cohort. Eye 29,
1360–1367 (2015).

30. Black, D. Health and deprivation: Inequality and the north. J. R. Coll.
Gen. Pract. 38, 234 (1988).

31. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in python. Nat. Methods 17, 261–272 (2020).

32. Crouse, D. F. On implementing 2D rectangular assignment
algorithms. IEEE Trans. Aerosp. Electron. Syst. 52, 1679–1696 (2016).

33. Hua, K. et al. Tract probabilitymaps in stereotaxic spaces: analyses of
white matter anatomy and tract-specific quantification. Neuroimage
39, 336–347 (2008).

34. Rokem, A et al. GPU‐accelerated diffusion MRI tractography in DIPY.
Presented at the: International Society for Magnetic Resonance in
Medicine (2021).

35. Caffarra, S. et al. Development of the visual white matter pathways
mediates development of electrophysiological responses in visual
cortex. Hum. Brain Mapp. 42, 5785–5797 (2021).

36. Joliot, M. et al. AICHA: An atlas of intrinsic connectivity of homotopic
areas. J. Neurosci. Methods 254, 46–59 (2015).

37. Garyfallidis, E. et al. Dipy, a library for the analysis of diffusion MRI
data. Front. Neuroinform. 8, 8 (2014).

38. Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L. & Muller, P.-A.
Data augmentation using synthetic data for time series classification
with deep residual networks. International Workshop on Advanced

https://doi.org/10.1038/s43856-024-00496-w Article

Communications Medicine |            (2024) 4:72 8

https://www.ukbiobank.ac.uk/enable-your-research
https://www.ukbiobank.ac.uk/enable-your-research
https://github.com/36000/glauc_paper_scripts
https://github.com/36000/glauc_paper_scripts
https://github.com/36000/glauc_paper_scripts
https://github.com/36000/glauc_paper_scripts


Analytics and Learning on Temporal Data, ECML/PKDD
1808.02455 (2018).

39. He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2016).

40. RichieHalford, A., Yeatman, J., Simon, N. &Rokem, A.Multidimensional
analysis and detection of informative features in diffusion MRI
measurements of human white matter. bioRxiv https://www.biorxiv.org/
content/early/2019/12/20/2019.12.19.882928 (2019).

41. Brown,M. L. & Kros, J. F. Datamining and the impact of missing data.
Ind. Manag. Data Syst. 103, 611–621 (2003).

42. Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R. & Lin, C. J.
LIBLINEAR: A Library for Large Linear Classification. J. Mach. Learn.
Res. 9, 1871–1874 (2008).

43. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach.
Learn. Res. 12, 2825–2830 (2011).

44. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the
areas under two or more correlated receiver operating characteristic
curves: a nonparametric approach. Biometrics 44, 837–845 (1988).

45. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A
practical andpowerful approach tomultiple testing.J.R.Stat. Soc.57,
289–300 (1995).

46. Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc.
56, 52–64 (1961).

47. Carter, J. V., Pan, J., Rai, S. N. & Galandiuk, S. Roc-ing along:
Evaluation and interpretation of receiver operating characteristic
curves. Surgery 159, 1638–1645 (2016).

48. Kruper, J. et al. UK Biobank Eye and Vision Consortium. Optic
radiations representing different eccentricities age differently. Hum
Brain Mapp. 44, 3123–3135 (2023).

49. Mehta, P. et al. Automated detection of glaucoma with interpretable
machine learning using clinical data and multimodal retinal images.
Am. J. Ophthalmol. 231, 154–169 (2021).

50. Jones, D. K., Knösche, T. R. & Turner, R. White matter integrity, fiber
count, and other fallacies: the do’s and don’ts of diffusion MRI.
Neuroimage 73, 239–254 (2013).

51. Lipton, Z. C. The doctor just won’t accept that! NIPS 2017
Interpretable ML Symposium 1711.08037 (2017).

52. Rokem, A., Qiao, J., Yeatman, J. D. & Richie-Halford, A. Incremental
improvements in tractometry-based brain-age modeling with deep
learning https://www.biorxiv.org/content/10.1101/2023.03.02.
530885v1 (2023).

53. Zhou, W. et al. Retinotopic fMRI reveals visual dysfunction and
functional reorganization in the visual cortex of mild to moderate
glaucoma patients. J. Glaucoma 26, 430–437 (2017).

54. Qing, G., Zhang, S., Wang, B. & Wang, N. Functional MRI signal
changes in primary visual cortex corresponding to the central normal
visual field of patients with primary open-angle glaucoma. Invest.
Ophthalmol. Vis. Sci. 51, 4627–4634 (2010).

55. Duncan, R. O., Sample, P. A., Weinreb, R. N., Bowd, C. & Zangwill, L.
M. Retinotopic organization of primary visual cortex in glaucoma:
Comparing fMRI measurements of cortical function with visual field
loss. Prog. Retin. Eye Res. 26, 38–56 (2007).

56. Kosior-Jarecka, E. et al. Volumeof lateral geniculate nucleus inpatients
with glaucoma in 7tesla MRI. J. Clin. Med. Res. 9, 2382 (2020).

57. Sen, S., Saxena, R., Tripathi, M., Vibha, D. & Dhiman, R.
Neurodegeneration in alzheimer’s disease and glaucoma: overlaps
and missing links. Eye 34, 1546–1553 (2020).

58. Chua, S. Y. L. et al. The relationship between ambient atmospheric
fine particulate matter (PM2.5) and glaucoma in a large community
cohort. Invest. Ophthalmol. Vis. Sci. 60, 4915–4923 (2019).

59. Mitchell, P., Smith, W., Attebo, K. & Healey, P. R. Prevalence of open-
angle glaucoma in australia. the blue mountains eye study.
Ophthalmology 103, 1661–1669 (1996).

60. Dielemans, I. et al. The prevalence of primary open-angle glaucoma in
a population-based study in the netherlands. the rotterdam study.
Ophthalmology 101, 1851–1855 (1994).

61. Tielsch, J.M. et al. Racial variations in the prevalenceof primary open-
angle glaucoma. the baltimore eye survey. JAMA 266,
369–374 (1991).

62. Automatic fast and reliable recognition of a small brain white matter
bundle, vol. 13722 of LNCS (Springer Cham, 2023).

63. Rokem, A. et al. Evaluating the accuracy of diffusion MRI models in
white matter. PLoS ONE 10, e0123272 (2015).

64. Novikov, D. S., Kiselev, V. G. & Jespersen, S. N. On modeling.Magn.
Reson. Med. 79, 3172–3193 (2018).

65. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C.
NODDI: practical in vivo neurite orientation dispersion and density
imaging of the human brain. Neuroimage 61, 1000–1016 (2012).

66. Rutherford, S. et al. The normative modeling framework for
computational psychiatry. Nat. Protoc. 17, 1711–1734 (2022).

67. Chamberland, M. et al. Detecting microstructural deviations in
individuals with deep diffusion MRI tractometry. Nat. Comput. Sci. 1,
598–606 (2021).

68. Lee, C. S., Baughman, D. M. & Lee, A. Y. Deep learning is effective for
the classification of OCT images of normal versus age-related
macular degeneration. Ophthalmol. Retina 1, 322–327 (2017).

69. Saravanan, V., Samuel, R. D. J., Krishnamoorthy, S. & Manickam, A.
Deep learning assisted convolutional auto-encoders framework for
glaucoma detection and anterior visual pathway recognition from
retinal fundus images. J. Ambient Intell. Humanized Comput. https://
doi.org/10.1007/s12652-021-02928-0 (2022).

70. Yousefi, S. Clinical applicationsof artificial intelligence in glaucoma. J.
Ophthalmic Vis. Res. 18, 97–112 (2023).

71. Chamberland, M. et al. Detecting microstructural deviations in
individuals with deep diffusion MRI tractometry. Nat Comput Sci 1,
598–606 (2021).

72. Kruper, J. Code to reproduce the analysis in “Convolutional neural
network-based classification of glaucoma using optic radiation tissue
properties" https://doi.org/10.5281/zenodo.10459961 (2024).

Acknowledgements
This project was funded by NSF grant 1934292 (PI: Balazinska), NIH grant
R01 AG 060942 (PI: Lee), NEI grant R01 EY033628 (PI: Benson), NIH grant
RF1 MH121868 (PI: Rokem), NIH grant R01HD095861 (PI: Yeatman). J.K.
was supported through the NSF Graduate Research Fellowship DGE-
2140004.S.C.was fundedby the “RitaLeviMontalcini" program, grantedby
the Italian Ministry of University and Research (MUR). Unrestricted and
career development award from RPB (Julia Owen, Yue Wu, Cecilia Lee,
Aaron Lee), Latham Vision Science Awards (Julia Owen, Yue Wu, Cecilia
Lee, Aaron Lee), NEI/NIH K23EY029246 (Aaron Lee) and NIA/NIH
U19AG066567 (Julia Owen, Yue Wu, Cecilia Lee, Aaron Lee, Ariel Rokem).

Author contributions
J.K., A.R., C.S.L., J.O., A.Y.L., S.C., N.B., and J.Y. helped conceptualize the
research ideas. J.K. and A.R. developed and implemented the software
used. A.R.-H., S.C., and N.B. created models for the analysis. C.E., A.Y.L.,
C.S.L., and Y.W. organized and provided the data. A.Y.L. and C.S.L.
provided the computing resources. J.K. and A.R. analyzed and investigated
the data. J.K. and A.R. wrote the initial draft of the paper with input from all
authors. All authors provided feedback on the manuscript.

Competing interests
The authors declare the following competing interests: A.Y.L. reports grants
from Santen, personal fees from Genentech, personal fees from US FDA,
personal fees from Johnson and Johnson, grants from Carl Zeiss Meditec,
personal fees from Topcon, personal fees from Gyroscope, non-financial
support fromMicrosoft,grants fromRegeneron,outside thesubmittedwork;

https://doi.org/10.1038/s43856-024-00496-w Article

Communications Medicine |            (2024) 4:72 9

https://www.biorxiv.org/content/early/2019/12/20/2019.12.19.882928
https://www.biorxiv.org/content/early/2019/12/20/2019.12.19.882928
https://www.biorxiv.org/content/early/2019/12/20/2019.12.19.882928
https://www.biorxiv.org/content/10.1101/2023.03.02.530885v1
https://www.biorxiv.org/content/10.1101/2023.03.02.530885v1
https://www.biorxiv.org/content/10.1101/2023.03.02.530885v1
https://doi.org/10.1007/s12652-021-02928-0
https://doi.org/10.1007/s12652-021-02928-0
https://doi.org/10.1007/s12652-021-02928-0
https://doi.org/10.5281/zenodo.10459961
https://doi.org/10.5281/zenodo.10459961


Thisarticledoesnot reflect theviewsof theUSFDA.All other authorsdeclare
that they have no conflicts of interest.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43856-024-00496-w.

Correspondence and requests for materials should be addressed to
Ariel Rokem.

Peer review informationCommunicationsMedicine thanks AshkanNejad,
LloydPlumart and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

UK Biobank Eye and Vision Consortium

Naomi Allen8, Tariq Aslam9, Denize Atan10, Konstantinos Balaskas7, Sarah Barman11, Jenny Barrett12, Paul Bishop9,
GraemeBlack9, TasaneeBraithwaite13, RoxanaCarare14, UshaChakravarthy15, Michelle Chan7, SharonChua16, AlexanderDay7,
Parul Desai7, Bal Dhillon17, AndrewDick10, Alexander Doney18, Catherine Egan7, Sarah Ennis14, Paul Foster16, Marcus Fruttiger16,
John Gallacher8, David Garway-Heath16, Jane Gibson14, Jeremy Guggenheim19, Chris Hammond20, Alison Hardcastle16,
Simon Harding21, Ruth Hogg15, Pirro Hysi20, Pearse Keane16, Peng Tee Khaw16, Anthony Khawaja7, Gerassimos Lascaratos7,
Thomas Littlejohns8, Andrew Lotery14, Robert Luben16, Phil Luthert16, TomMacGillivray17, Sarah Mackie12,
Savita Madhusudhan22, Bernadette McGuinness15, Gareth McKay15, Martin McKibbin23, Tony Moore16, James Morgan19,
Eoin O’Sullivan24, Richard Oram25, Chris Owen26, Praveen Patel7, Euan Paterson15, Tunde Peto15, Axel Petzold27,
Nikolas Pontikos16, Jugnoo Rahi28, Alicja Rudnicka26, Naveed Sattar29, Jay Self14, Panagiotis Sergouniotis9, Sobha Sivaprasad7,
David Steel30, Irene Stratton31, Nicholas Strouthidis7, Cathie Sudlow17, Zihan Sun16, Robyn Tapp26, Dhanes Thomas7,
MervynThomas32, Emanuele Trucco18, AdnanTufail7, AnanthViswanathan7, VeroniqueVitart17,MikeWeedon25, KatieWilliams20,
Cathy Williams10, Jayne Woodside15, Max Yates33 & Yalin Zheng21

8University ofOxford,Oxford,UK. 9TheUniversity ofManchester,Manchester,UK. 10University ofBristol,Bristol,UK. 11University ofKingston,London,UK. 12University
of Leeds, Leeds,UK. 13StThomas’Hospital, London,UK. 14UniversityofSouthampton,Southhampton,UK. 15Queen’sUniversityBelfast,Belfast,UK. 16UCL Instituteof
Ophthalmology, London,UK. 17University ofEdinburgh,Edinburgh,UK. 18University ofDundee,Dundee,UK. 19Cardiff University,Cardiff, UK. 20King’sCollegeLondon,
London, UK. 21University of Liverpool, Liverpool, UK. 22Royal Liverpool University Hospital, Liverpool, UK. 23Leeds Teaching Hospitals NHS Trust, Leeds, UK. 24King’s
College Hospital, London, UK. 25University of Exeter, Exeter, UK. 26St George’s, University of London, London, UK. 27UCL Institute of Neurology, London, UK. 28UCL
Institute of Child Health, London, UK. 29University of Glasgow, Glasgow, UK. 30Newcastle University, Newcastle, UK. 31Gloucestershire Hospitals NHS Foundation
Trust, Gloucester, UK. 32University of Leicester, Leicester, UK. 33University of East Anglia, Norwich, UK.

https://doi.org/10.1038/s43856-024-00496-w Article

Communications Medicine |            (2024) 4:72 10

https://doi.org/10.1038/s43856-024-00496-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Convolutional neural network-based classification of glaucoma using optic radiation tissue properties
	Methods
	Data�access
	Datasets and statistical matching
	MRI acquisition
	Automated fiber quantification
	Machine learning
	Reporting summary

	Results
	Discussion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




