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insights into cross-ancestry glaucoma risk and
genetic discovery in >280,000 images from UKB and CLSA
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Summary
Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic neuropathy. Two key parameters are ver-

tical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD). However, manual assessment often suffers from poor accuracy and is

time intensive. Here, we show convolutional neural network models can accurately estimate VCDR and VDD for 282,100 images

from both UK Biobank and an independent study (Canadian Longitudinal Study on Aging), enabling cross-ancestry epidemiological

studies and new genetic discovery for these optic nerve head parameters. Using the AI approach, we perform a systematic comparison

of the distribution of VCDR and VDD and compare these with intraocular pressure and glaucoma diagnoses across various genetically

determined ancestries, which provides an explanation for the high rates of normal tension glaucoma in East Asia.We then used the large

number of AI gradings to conduct amore powerful genome-wide association study (GWAS) of optic nerve head parameters. Using the AI-

based gradings increased estimates of heritability by�50% for VCDR and VDD. Our GWAS identifiedmore than 200 loci associated with

both VCDR and VDD (double the number of loci from previous studies) and uncovered dozens of biological pathways; many of the loci

we discovered also confer risk for glaucoma.
Introduction

The optic nerve head is the exit point of retinal ganglion

cell axons from the eye to the brain.1 It is commonly as-

sessed during ophthalmic examinations using fundoscopy

or optical imaging technology for multiple ocular diseases,

such as glaucoma, which is the leading cause of irreversible

blindness globally and is characterized by characteristic

cupping of the optic disc as a result of retinal ganglion

cell apoptosis.2,3 Enlarged vertical cup-to-disc ratio

(VCDR) is considered a hallmark of glaucomatous optic

neuropathy and is often used to define glaucoma in general

population-based prevalence surveys.4 However, VCDR

alone is not adequate to assess glaucomatous damage in

part because of the variation of optic disc size. For instance,

a vertical cup-to-disc ratio of 0.5 in a small optic disc could

be pathologic, whereas a vertical cup-to-disc ratio of 0.8 in a

large disc size may represent physiologic cupping. Adjust-

ing for optic disc size is hence important to maximizing

the clinical utility of VCDR in diagnosing glaucoma.

Family studies have shown that optic disc morphology

traits are highly heritable with an estimated heritability

of 0.48 and 0.57 for VCDR and optic disc diameter, respec-

tively.5 Large-scale genome-wide association studies

(GWASs) for optic disc morphology have begun to shed

light on the development and pathogenesis of glaucoma
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and other optic nerve diseases.6–8 However, both large

sample sizes and accurate phenotyping are critical in

GWASs and further progress will be difficult under the ex-

isting manual phenotype paradigm. Manual assessment of

optic disc photographs is time intensive and often suffers

from poor inter-observer concordance, even when per-

formed by trained specialists, and an alternative approach

is required.9,10 Clinical estimates of VCDR are more diffi-

cult from monoscopic photographs compared with stereo-

scopic viewing of the optic nerve head, which can be

achieved during slit-lamp biomicroscopy or from stereo-

scopic photographs.

Recent advances in artificial intelligence (AI) algorithms

have shown exciting promise in healthcare,11 including

the automated diagnosis of eye diseases.12,13 With the

high performance of AI technology, the U.S. Food and

Drug Administration approved the first medical device to

use AI technology to detect diabetic retinopathy in

2018.14,15 The probabilistic nature and non-linear capabil-

ities, as well as analytical capabilities to deal with single

and multimodal high-dimensional data, has seen the appli-

cation of AI experience lower resistance to adoption in the

medical field when applied to computer vision applica-

tions. Two fundamental properties have facilitated AI appli-

cation to medical diagnostics. First, the problem space

(medical imaging) is, relative to other medical domains,
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well studied and very well understood. Second, an observa-

tion of the output can be quickly validated by a clinical

practitioner, who by having access to additional clinical

or historical data about that patient,may suggest alternative

diagnosis. A motivating factor driving utilization of AI on

data such as fundus images is the large volume of images

available for algorithms to be trained on. Furthermore, stan-

dardized imaging techniques can drastically reduce the da-

taset heterogeneity. This is highlighted by the collection of

images as part of the UK Biobank (UKB) and Canadian Lon-

gitudinal Study on Aging (CLSA) biobank completed over a

decade. Automated diagnosis from retinal fundus imaging

has been approached through a number of different algo-

rithms, ranging from multi-stage ‘‘classical’’ learning algo-

rithms to end-to-end deep learning models.16–18 The fast

and automatic phenotyping with AI algorithms would

enable large-scale genetic studies.19,20

In this study, a convolutional neural network (CNN)

model was utilized in a transfer learning approach,

training on clinical assessments of the optic nerve head

in �70,000 photographs (labeled training data) of UKB

participants. Automatic labeling by the CNN model

dramatically boosts the effective sample size (n ¼
282,100 total images graded), presenting an opportunity

to greatly expand the utility of the GWAS approach for

VCDR and optic disc diameter. We also apply the AI labels

systematically across the multiple different ancestries in

UKB and CLSA and investigate how VCDR and other glau-

coma risk factors, such as intraocular pressure (IOP), relate

to glaucoma risk in different ancestries.
Subjects and methods

Study design and overview
The overall study design is summarized in Figure 1.We use transfer

learning to train three CNN models for image gradability, VCDR,

and vertical disc diameter (VDD) values from�70,000 UKB fundus

images graded by clinicians. These models were then applied to all

UKB fundus images (85,736 participants and 175,770 images in to-

tal) and another independent cohort—the Canadian Longitudinal

Study on Aging (CLSA, 29,635 participants and 106,330 images in

total). We performed AI-based GWASs for VCDR and VDD and

replicated genetic discoveries in clinician-graded fundus images

from the International Glaucoma Genetics Consortium (IGGC)

and in IGGC glaucoma case-control studies.21 The large-scale bio-

bank data for both VCDR and IOP also allow us to systematically

compare the glaucoma risk and optic nerve head parameters across

different ancestries.

The UKB and the CLSA have been reviewed and approved by

local research ethics boards. All participants provided informed

written consent, and study procedures were performed in accor-

dance with the World Medical Association Declaration of Helsinki

ethical principles for medical research.
Study populations
UK Biobank

The UK Biobank (UKB) is a population-based cohort study with

deep genetic and phenotypic data from �500,000 participants
The Americ
aged between 40 to 69 years at the time of recruitment (2006–

2010) and living in the United Kingdom.22 Retinal fundus images,

obtained with the Topcon 3D OCT 1000 Mk2 instrument, were

available for both left and right eyes from two assessment visits,

covering �85,000 participants (�68,000 participants in the base-

line visit and �19,000 participants in the first repeat assessment

visit [2012–2013], with approximately 2,000 overlap participants

in the baseline and repeat visits). In our previous study, VCDR

and VDD were graded by two clinicians via a custom Java pro-

gram.23 Detailed image processing and quality control methods

were described previously.23 Briefly, given the time-consuming na-

ture of manual grading, we only graded the left eye images (if the

left eye images were ungradable, the right eye images were used

instead) and one visit (if the second visit measurements were un-

available, the first visit measurements were used instead) of white

British ancestry participants. A total of 67,040 participants with

both VCDR and VDD measurements were included in our previ-

ous GWAS. In this study, we used a CNN model to grade left and

right eye images from two visits for all participants, irrespective

of ancestry, with a total of 175,770 images.

In the UKB, �488,000 participants were genotyped for 805,426

variants on Axiom arrays (Affymetrix Santa Clara, USA). The ge-

netic data, quality control procedures, and imputation methods

have been described previously.22 Briefly, �96 million variants

were imputed with the Haplotype Reference Consortium (HRC)

and UK10K haplotype resources,22,24,25 and 487,409 individuals

passed genotyping quality control. Of them, 438,870 individuals

were genetically similar to those of white British ancestry.22,26

For the GWAS in UKB, we retained SNPs with minor allele fre-

quency (MAF)> 0.01 and imputation quality score> 0.8. To verify

self-reported diverse ancestry information (data field 21000 in

UKB), we used a K-means clusteringmethod based on genetic prin-

cipal components (PCs). The genetic clusters were compared with

self-reported ancestry. Participants within the same self-reported

ancestry groups were largely in the same genetic clusters (e.g., Af-

rican [N ¼ 9,791], East Asian [N ¼ 2,594], and South Asian [N ¼
9,941], detailed in Figure S1), and on average, �20% of them

have fundus retinal images.

The Canadian Longitudinal Study on Aging

The Canadian Longitudinal Study on Aging (CLSA) is a national,

longitudinal cohort study of 51,338 participants, aged 45 to 85

years at enrollment, from ten Canadian provinces.27,28 Recruit-

ment and baseline data collection were completed in 2015, and

participants were followed-up on every 3 years and had an initial

follow-up visit completed in 2018. In this study, the nerve head

photographs are available for 30,097 participants from the

CLSA ‘‘comprehensive cohort’’ (for both left and right eyes and

the baseline and first follow-up visit). Retinal fundus imaging

was performed with a Topcon (TRC-NW8) non-mydriatic retinal

camera, and images were saved in jpg format. A random sample

of 1,000 images was graded by a clinician for both VCDR and

VDDvia a custom Java program. The latest genome-wide genotype

data (August 2019 release) are available for 19,669 participants of

the comprehensive cohort, comprising 794,409 genetic variants

genotyped on the Affymetrix Axiom array and �40 million ge-

netic variants imputed via the Haplotype Reference Con-

sortium.24 Variant- and sample-based quality control procedures

were consistent with standards of the UKB,22 and detailed steps

are presented in the CLSA support document (see web resources).

For the GWAS analysis, we included 18,304 participants of Euro-

pean ancestry on the basis of the K-means cluster method on ge-

netic principal components, and the largest cluster also contains
an Journal of Human Genetics 108, 1204–1216, July 1, 2021 1205



Figure 1. Flowchart of AI framework and
datasets
In UK Biobank (UKB), the fundus retinal
eye images were available for �85,000 par-
ticipants (�68,000 participants in the
baseline visit and �19,000 participants in
the first repeat assessment visit). In our
previous study, vertical cup-to-disc ratio
(VCDR) and vertical disc diameter (VDD)
were graded by two clinicians in �70,000
photographs via a custom Java program.
These clinical assessments were used as
training data for three convolutional neu-
ral network (CNN) models for image grad-
ability, VCDR, and VDD values. The
learned models were then applied to all
UKB fundus images (85,736 participants
and 175,770 images in total) and another
independent cohort—the Canadian Lon-
gitudinal Study on Aging (CLSA; 29,635
participants and 106,330 images in total).
We further used the AI labels to systemati-
cally evaluate optic nerve head parameters
across the multiple different ancestries in
UKB and CLSA and to perform AI-based
GWASs for VCDR and VDD.
the majority of individuals that self-report European ancestry.

SNPs with MAF> 0.01 and imputation quality score> 0.8 were re-

tained in association analysis. From the K-means clustering

method, the sample sizes for African, South Asian, and East Asian

are 135, 219, and 217, respectively (PC plot shown in Figure S2).

The International Glaucoma Genetic Consortium

The International Glaucoma Genetic Consortium (IGGC) is an in-

ternational consortia established to identify glaucoma genetic risk

variants through large-scale meta-analysis. The phenotype and ge-

notype data of VCDR and optic disc area for IGGC have been pre-

viously described elsewhere.7,29 It should be noted the optic disc

area is not in the same scale as VDD from the AI gradings. When

comparing and meta-analyzing the VDD and disc area data, we

applied a rank-based inverse normal transformation to AI gradings

and rendered them back to disc area scale, as detailed in our previ-

ous study.8 Publicly available summary statistics were downloaded

for individuals of European descent (NVCDR ¼ 25,180, Ndisc ¼
24,509, from the latest HRC imputation), as well as Asian descent

(NVCDR ¼ 8,373, Ndisc ¼ 7,307).7,29

Glaucoma GWAS dataset

The glaucoma datasets were described in our previous study,

including 34,179 primary open-angle glaucoma cases and

349,321 controls from a large-scale multi-ethnic meta-analysis.21

The detailed information of phenotype definition and genetic as-

sociation analyses were presented in detail previously.21 We used

the GWAS summary statistics to look up each of the VCDR loci

(adjusted for VDD) and assess their effects on glaucoma.

AI algorithm on retinal images
We used three separate CNNmodels to make inferences about im-

age gradability, VCDR, and VDD values of retinal fundus images in

UKB. The image gradability (gradable or ungradable) was defined

as a binary classification based on VCDR values (which is a slightly

more complexmeasurement than VDD), while the latter two tasks

were modeled as regression problems. Images with a higher likeli-

hood of gradability (i.e., designated softmax probabilitymore than

0.5) were assigned as gradable. While a variety of CNN model ar-

chitectures were tested, the final architecture used for all CNN
1206 The American Journal of Human Genetics 108, 1204–1216, July
models was ResNet-34.30 Pre-trained weights, initially trained on

ImageNet31 classification tasks, were utilized for each model as a

form of transfer learning. Untrained layers specific to each model

were additionally added, forming a custom regression (Relu) and

classification (softmax) heads for each respective task. All fundus

images were cropped to a pixel ratio of 1,080:800 before training

or validation. We used the highest native resolution for the UKB

training images because we found that using lower resolution

negatively impacted inference metrics. The total dataset sizes

used for the VCDR, VDD, and gradability tasks were 71,950,

50,984, and 75,718, respectively. Each dataset was randomly split

into 80% training and 20% validation. The model performance

was validated by sample hold out, and final testing was performed

on images from the CLSA dataset. Model requirements for regres-

sion tasks were defined achieving a validation loss equal or lower

than human inter-rater loss. The gradability task criteria were

defined as accuracy above 95%. Both regression tasks utilized

mean square error loss function, while the classification model

optimized over the binary cross entropy loss function. Training

of all models was completed via the FastAI framework,32 while

the in-built data augmentations functionality was utilized to

improve accuracy and generalizability. The specifics of which aug-

mentations were used can be found in Table S1. It should be noted

that the regression task for VDD was dependent on image scale,

and as such, augmentations that introduced scaling were omitted.

Training was carried out in two stages: the first involved freezing

the pre-trained weights and only training the task head and in

the second, the ‘‘fine tuning’’ stage, all model weights were unfro-

zen. Each stage was trained with cyclical training rate, as described

elsewhere,33 and performed until the validation loss reached a

plateau.

Optic nerve head parameters, intraocular pressure, and

glaucoma risk across different ancestries
Previous studies have reported differences in VCDR and VDD

values across different ancestry groups.34,35 Taking advantage

of the diverse ancestries available in UKB and CLSA, we

compared our AI-derived VCDR and VDD values, as well as IOP
1, 2021



(corneal-compensated26) values across different ancestry groups.

We used the K-means clustering method to define ancestry groups

on the basis of genetic data (detailed above). We used boxplots to

show the differences of optic nerve head measurements across

different ancestry groups (e.g., median value and upper and lower

quartiles). The mean values of VCDR across different ancestries

were estimated after adjusting for age, sex, and VDD. The 97.5th

percentile of optic nerve head measurements and its 95% confi-

dence interval (2.5% to 97.5% quantiles) were also calculated on

the basis of 1,000 bootstrapped samples, on account of the substan-

tially smaller sample size for individuals of African, East Asian, and

South Asian ancestry. We then investigated how VCDR and IOP

relate to glaucoma risk in different ancestries. The definition of

glaucoma cases and controls was detailed in our previous study.23

Briefly, in UKB, glaucoma cases were ascertained from International

Classification of Diseases diagnosis, record-linkage data from gen-

eral practitioners, and self-reported previous diagnosis. In the

CLSA, participants were interviewed in-person with the question

‘‘has a doctor ever told you that you have glaucoma.’’ We used lo-

gistic regression models to evaluate the association between genet-

ically defined ancestry groups and glaucoma risk. In each different

model, we adjusted different covariates to evaluate the association

of ethnic groups and glaucoma risk. In the basemodel, only sex and

age were adjusted for; the other models also include either IOP,

VCDR, or both (IOP and VCDR).
Genome-wide association analysis and meta-analysis
For both UKB and CLSA, we carried out the VCDR and VDDGWAS

association tests by using a linear mixed model (with BOLT-LMM

v.2.3)36 to account for cryptic relatedness and population stratifi-

cation, adjusting for sex and age. We also included the first ten

PCs in the model to speed up the convergence of computa-

tions.37 The average values of measurements from left and right

eyes andmultiple visits (if available) were used andwere first trans-

formed via a rank-based inverse-normalmethod before association

tests.38 To account for optic disc size covariation, we adjusted

VCDR grading for VDD in GWAS analyses.8,39 The VDD-adjusted

VCDR and VDD GWASs results from UKB and CLSA were then

meta-analyzed with those from the IGGC on the basis of the in-

verse variance-weighted method (METAL software 2011-03-25

release).40 We also conducted association tests for VCDR and

VDD in African and South Asian populations in UKB. Because of

the relatively small size of each of these populations (Table S2,

less than the recommended sample size of 5,000 in BOLT-LMM),

PLINK was used instead, after removing related individuals.41

SNP-based heritability was calculated by LD score regression

(LDSC) from GWAS summary statistics.42,43 We used bivariate

LD score regression to estimate the genetic correlation between

pairs of traits in European ancestry.42 We selected independent

SNPs on the basis of the PLINK clumping method with p value

< 5 3 10�8, r2 < 0.01, and a window of 1 Mb from the index

variant.41 To define ‘‘novel loci’’ from the AI-based GWAS, we

checked previous UKB VCDR and VDD GWASs based on clinician

gradings;8,23 we also looked up the proxy SNPs (r2> 0.8) of top loci

and their nearest genes in the GWAS Catalog.44
Cross-population genetic effects on optic nerve head

parameters
We evaluated the effects of genetics variants on VCDR and VDD

across different populations on the basis of the following

methods. First, we compared and replicated the AI-based top loci
The Americ
from European ancestry with the GWAS from African and South

Asian samples. The effect sizes and standard errors of top loci

were shown in a scatterplot for different ancestries. Second, we

calculated the trans-ethnic genetic effect correlation for VCDR

and VDD by using the ‘‘Popcorn’’ package.45 Specifically, the

GWAS summary statistics for VCDR and VDD from European

ancestry were compared with that in Asian and African ancestry.
Transcriptome-wide association study and pathway

analysis
To prioritize potential causal genes, we performed transcriptome-

wide association study (TWAS) analysis in FUSION by using

GWAS summary statistics and retina gene expression data.46 In

FUSION, we used reference data with both gene expression and

genetic variants (SNPs) to train predictive models, which we

used to impute the expression-trait association directly from

large-scale GWAS summary statistics.46 The weights of retina

gene expression were obtained from 406 individuals from Eye Ge-

notype Expression (EyeGEx) database.46,47 We also used the Eye-

GEx database to perform a summary data-based Mendelian

randomization (SMR) to investigate the association of gene

expression levels (exposure) and phenotype (outcome).48 We

used the heterogeneity in dependent instruments (HEIDI) tests

to evaluate the null hypothesis that a single causal variant affects

both gene expression and outcome, and the significance

threshold was set at 0.05 (PHEIDI R 0.05, not reject the null hy-

pothesis).48 Pathway analyses were conducted in MAGMA as im-

plemented in FUMA (v.1.3.6).49,50 All other analyses were per-

formed with R software.51
Results

Study data and performance of the trained AI model

In the UKB, 85,736 participants had at least one fundus

retinal image and there was a total of 175,770 images avail-

able (Table 1). Themean age at baseline was 57.0 (SD¼ 8.1)

years, and 54% were women. In the CLSA cohort, 29,635

participants with 106,330 images were included in anal-

ysis; of these participants, 50% were women and the

mean age at recruitment was 62.6 (SD ¼ 10.0) years.

We first trained a convolution neural network to assess

whether each image was gradable in the UKB training sam-

ple. We found that most participants (>95%) had gradable

images in the UKB and the CLSA cohort (Figure S3). We

then predicted the measurements of both VCDR and

VDD and compared the AI-based measures with clinician

gradings. The AI-based VCDR and VDD measurements ex-

hibited a higher concordance to clinician gradings

compared with previous gradings by two clinicians.8,23,52,

53 For instance, the Pearson’s correlation coefficient of

the VCDR measurements in the UKB samples was 0.81

(95% confidence interval [CI] ¼ 0.80–0.81), and it was

0.84 (95% CI ¼ 0.82–0.86) for an independent Canadian

dataset (CLSA) (Figure S4). We therefore speculated that

with the improved accuracy of VCDR and VDD measure-

ments and the larger number of images graded, the optic

nerve head assessment would increase the power for ge-

netic discovery.
an Journal of Human Genetics 108, 1204–1216, July 1, 2021 1207



Table 1. Characteristics of retinal fundus images from the UK Biobank and Canadian Longitudinal Study on Aging participants

Variable UKB CLSA

Number of images 175,770 106,330

Number of participants 85,736 29,635

% with at least one gradable image 95% 99%

Sex women (%) 44,017 (54%) 14,941 (51%)

Age at recruitment mean (SD), years 57 5 8 63 5 10

Vertical cup-disc-ratio unit in 0–1 0.37 5 0.14 0.35 5 0.15

Vertical disc diameter unit in pixel count 129.0 5 10.5 121.4 5 10.6

Abbreviations are as follows: CLSA, Canadian Longitudinal Study on Aging cohort; SD, standard deviation; UKB, UK Biobank.
Optic nerve head parameters and intraocular pressure

across different ancestries

We compared AI model-derived VCDR and VDD measure-

ments across different genetically defined ancestry groups.

VDD was similar across three ancestral groups (Europeans,

East Asians, and South Asians) and larger in Africans (Fig-

ures 2B and 2E). On average, after adjusting for age, sex,

and VDD, VCDR was markedly higher in Asians and Afri-

cans than it was in Europeans (similar results in UKB

[Figure 2A] and in CLSA [Figure 2D]). A different

ancestry-based trend was also observed for IOP; relative

to Europeans, South Asians had similar IOP, East Asians

had lower IOP, and Africans had higher IOP (Figures 2C

and 2F).

We then examined whether the systematically assessed

VCDR, VDD, and IOP can explain the observed prevalence

of glaucoma seen across different ancestries in the UK and

Canada. Figure 3 shows the glaucoma risk of Africans, East

Asians, and South Asians with European ancestry (the

most common ancestry in UKB and CLSA datasets) as the

baseline. Consistent with previous epidemiological

studies, Africans have the highest glaucoma risk (Figure 3

base model, correcting for only age and sex OR ¼ 2.5 rela-

tive to the reference of Europeans). As seen in Figure 2, Af-

ricans have higher VCDR and higher IOP than Europeans,

and when these were corrected for, the glaucoma risk ap-

proached that of Europeans in both CLSA and UKB. East

Asians had a similar base model risk to Europeans,

although the contribution of IOP and VDR differs; on

average, their IOP is lower and their VCDR is larger

(Figure 2), and there was a pattern of glaucoma risk chang-

ing as either IOP alone or VCDR alone were adjusted for in

the regression model. Adjusting for both IOP and VCDR,

the risk of glaucoma in East Asians was not significantly

different to Europeans, suggesting that the higher VCDR

and lower IOP in this group relative to Europeans coun-

teract each other, explaining the similar glaucoma inci-

dences between these ancestries. Interestingly, in South

Asians, IOP is similar to Europeans, but VCDR is higher

(Figure 2). This means that South Asian base model risk

does not change when IOP is included in the model, but

when VCDR is included, the glaucoma risk decreases to

become indistinguishable from the incidence in Euro-
1208 The American Journal of Human Genetics 108, 1204–1216, July
peans. In summary, by examining individuals of varying

ancestry living in the UK and Canada, we show that rela-

tive to European ancestry, African ancestry glaucoma inci-

dence is driven by both elevated VCDR and IOP, East Asian

ancestry glaucoma is driven by elevated VCDR but amelio-

rated by lower IOP, and finally, South Asian glaucoma is

driven by elevated VCDR but not by changes in IOP (rela-

tive to that in Europeans).

AI-based phenotypes greatly increase SNP-based

heritability and identify more loci

In the GWAS of VDD-adjusted VCDR, 145 and 19 statisti-

cally independent genome-wide significant SNPs were

respectively identified in the UKB alone and CLSA alone

(Figure S5). The results for the VCDR GWAS are essentially

the same after further adjusting for both VDD and IOP

(Figure S6). The analogous numbers of SNPs for VDD

were 142 and 17 for UKB and CLSA, respectively. We found

weak evidence of genomic inflation from linkage disequi-

librium score regression (Table S3). FromUKB, the AI-based

GWAS of VDD-adjusted VCDR and VDD identified sub-

stantially more loci than our previous GWAS based on

clinician gradings (76 for VDD-adjusted VCDR and 91 for

VDD).8,23 Strikingly, the SNP-based heritability increased

by �50% for VCDR and VDD (Figure S7). For instance,

the SNP-based heritability for VCDR was 0.22 from clini-

cian gradings (only single measure), whereas the heritabil-

ity increased to 0.35 from AI-based GWASs (average of

multiple measures). The increased heritability indicated

that AI-based phenotyping was substantially cleaner than

clinician gradings, which may be a result of two aspects:

(1) higher accuracy of AI-based gradings and (2) improved

accuracy from multiple measures per individual. We

further tested the hypothesis in UKB and CLSA by using

only one measure per individual from AI-based gradings.

The SNP-based heritability from a single measure (left or

right eyes in the baseline or first follow-up visit) was

�0.3, which is roughly in themiddle of heritability estima-

tion from clinician gradings and AI-based multiple mea-

sures (Figure S7). These results indicate the higher accuracy

of AI-based single measure per individual contributes to

the increase of heritability estimation and averaging of

multiple measures per individual can further increase the
1, 2021
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Figure 2. Optic nerve head measurements and intraocular pressure across different ancestry groups
(A) The boxplot for VCDR values from different ancestry groups in UK Biobank. The sample sizes of European, African, East Asian, and
South Asian are 66,838, 2,220, 567, and 2,087, respectively. The box represents median value with first and third quartiles. The red dia-
mond is the mean value of VCDR after accounting for age, sex, and VDD, where the mean value is annotated as text. The dark red dia-
mond is the 97.5th percentile of VCDR value. The dark red error bar is the 95% confidence interval (2.5% to 97.5% quantiles) of the
97.5th percentile based on 1,000 bootstrapped samples, which is essential for CLSA data where the sample sizes for African, East Asian,
and South Asian were substantially smaller (132, 213, and 213, respectively, and the sample size of white ancestry is 18,123).
(B) The boxplot for VDD values from different ancestry groups in UK Biobank. Because of the scale from fundus images, the VDD was
rank normalized (mean ¼ 0, SD ¼ 1). The red diamond is the mean value of VDD after accounting for age and sex.
(C) The boxplot for IOP levels from different ancestry groups in the UK Biobank (truncated at 40 mm Hg, with 15 participants between
40–60 mm Hg).
(D–F) (D), (E), and (F) show the boxplots for VCDR, VDD, and IOP in the CLSA cohort, respectively.
heritability. Consistent with our previous study,23 correct-

ing for VDD in the VCDR GWAS also improved the rele-

vance to glaucoma; there was a higher genetic correlation

with glaucoma in the VDD-adjusted VCDR compared

with the unadjusted VCDR GWAS (genetic correlation rg

¼ 0.502 versus 0.457 in UKB and 0.543 versus 0.481 in

CLSA).
Validation AI-based GWASs

We then compared AI-based and clinician grading-based

GWASs by using independent samples from the IGGC.

The concordance of SNP effect sizes of top SNPs between

the AI-based and clinician gradings was essentially one

(Figures 4A and 4D), and nearly all previously published

loci using clinician ratings were replicated. The estimated

effect sizes at the top SNPs from AI-based GWASs were

also highly concordant between UKB and CLSA (Figures

4B and 4E). When combining UKB and CLSA AI-based

GWASs, we identified 193 and 188 loci for VDD-adjusted
The Americ
VCDR and VDD, respectively, again exhibiting very high

concordance with IGGC (Figures 4C and 4F). The high

concordance and more loci support the better-powered

GWAS from AI-based measurements.
New genetic discovery of optic nerve head measures,

cross-ancestry comparison, and implications for

glaucoma

Tomaximize power for locus discovery, we combined UKB,

CLSA, and IGGC GWASs (European ancestry) and identi-

fied 230 and 231 independent genome-wide significant

SNPs for VDD-adjusted VCDR and VDD, respectively

(Figure 5). Of them, we found 111 and 107 novel loci for

VDD-adjusted VCDR and VDD, respectively (Tables S4

and S5). The pleiotropy effects of VCDR and VDD lead

SNPs on other traits were looked up in the GWAS Catalog

(Table S6). We then compared the effect sizes of top

VDD-adjusted VCDR and VDD loci across different ances-

tries (Asian and African GWASs); because of the much
an Journal of Human Genetics 108, 1204–1216, July 1, 2021 1209
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Figure 3. Glaucoma risk across different
ancestry groups
The figure shows the risk of glaucoma in
different ancestry groups. The horizontal
line at OR¼ 1 is the reference for European
ancestry. The y axis is the odds ratio (OR)
and 95% confidence interval (CI) for three
ethnic groups (African, South Asian, and
East Asian). In each different model, we
adjusted different covariates to evaluate
the association of ethnic groups and glau-
coma risk. In the base model, only sex
and age were adjusted for; the other
models also include either IOP, VCDR, or
both (IOP and VCDR).
smaller available sample sizes, their confidence intervals

were very large, however the clear linear trend indicated

the loci identified from European ancestry also had an ef-

fect on Asian populations (Figures 6A and 6 B; for VCDR

and VDD the Pearson’s correlation coefficient is 0.65 [p

value 3.6 3 10�27] and 0.62 [p value 9.3 3 10�23], respec-

tively). The sample size of African ancestry was much

smaller than Asian ancestry (N ¼ 2,245 versus 8,373 for

VCDR) and showed a lower concordance (Figure S8). The

genetic correlations across the genome were essentially

one on the basis of the Popcorn approach for VCDR and

VDD (Table S7). We also compared the effect sizes of

VDD-adjusted VCDR top loci with their effect sizes on

glaucoma (Figure 6C) and found a relatively high concor-

dance (Pearson’s correlation coefficient 0.71, p ¼ 4.1 3

10�37). Of the 230 VCDR (adjusted for VDD) loci, 205

(89%) were in the same direction, 131 were associated

with glaucoma at a nominal significance level (p < 0.05),

and 68 were associated with glaucoma after Bonferroni

correction (p < 0.05/230 ¼ 2.2 3 10�4, the nearest gene

names are highlighted in Figure 6C, e.g., RBPMS, AFAP1,

LMX1B, ABCA1, CAV1, and GAS7).

Gene prioritization and pathway analysis

We performed TWAS analysis in FUSION on the basis of the

VDD-adjusted VCDR and VDD GWAS summary statistics

and retinal gene expression data. For VDD-adjusted

VCDR, we identified 101 genes that were significant after

Bonferroni correction for multiple testing, nine of which

were not genome-wide significant in the per-SNP analysis

(Figures S9A and S9B). For VDD, we identified 64 genes

that were significant after Bonferroni correction formultiple

testing, 13 of which were not genome-wide significant in

the per-SNP analysis. From SMR analysis, we identified 29

and 24 genes for VDD-adjusted VCDR and VDD, respec-

tively, that were significant after multiple testing. We also

compared the genes identified from both FUSION and

SMR, and 11 and eight genes overlap from the twomethods

for VDD-adjustedVCDR andVDD, respectively (Figures S9C

and S9D). For instance, of the 11 genes that were associated

with VDD-adjusted VCDR for the two approaches, six genes

also passed the HEIDI tests (P4HTM, SNX32, RASGRF,

HAUS4, LRP11, and AC012613.2), suggesting the effects

on VCDR may be mediated via these gene expression in
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retina tissue. The large increase in power resulting from

the use of AI grading to improve accuracy and enable sub-

stantially larger datasets with multiple images per partici-

pant meant we were able to discover many new biological

pathways influencing optic nerve head development and

aging. Our pathway enrichment analysis uncovered 65

pathways for VCDR and 82 pathways for VDD after Bonfer-

roni correction for multiple testing (Tables S8 and S9). For

VCDR, as well as extracellular matrix pathways uncovered

by our previous work, these new pathway analyses uncov-

ered associations with telencephalon (forebrain) regionali-

zation, embryo development, and anatomical tube develop-

ment. There were several unexpected but statistically robust

associations with kidney development (e.g., GO meso-

nephros development, praw ¼ 3.45 3 10�8, p ¼ 0.00053 af-

ter correction for multiple comparisons). The genes driving

the kidney development pathway enrichment included

BMP2, BMP4, EYA1, FAT4, FOXC1, GLI3, PAX2, RARB,

SIX1, and SALL1. Several kidney pathways were also signif-

icant in the pathway enrichment analysis applied to our

VDD GWAS.
Discussion

Our results show the promising application of AI algo-

rithms in genetics studies. Large-scale biobanks such as

UKB and CLSA have accumulated hundreds of thousands

of optic nerve images containing important information

for glaucomatous optic neuropathy. However, the time-

intensive and moderate agreement of manual assessment

has impeded the usage of retinal fundus images. We

trained a deep learningmodel by using clinically estimated

VCDR and VDD and found the trained model has a high

accuracy. The large-scale biobank data for both VCDR

and IOP allow us to systematically compare the glaucoma

risk and optic nerve head parameters across different an-

cestries. Combining genetic and image data, we doubled

the number of loci for both VCDR and VDD and did so

with increased heritability.

The scope of available deep learningmodels for computer

vision tasks is extensive and continuously developing.

Various approaches to grade fundus images often utilize

intricate data preprocessing methods54–56 as well as
1, 2021
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Figure 4. Validation AI-based GWASs
The figure shows the effect sizes for VDD-adjusted VCDR and VDD from different datasets. The vertical and horizontal error bars are the
95% confidence interval for SNP effect sizes. The red line is the best fit line and the 95% confidence interval region is in gray.
computationally heavy models and training methods.17,57

In the instance of statistically powered, large-scale popula-

tionstudy, fast inferenceandquick iterationsarekey,making

heavycomputational anddesigncostsharder to justify.Here,

we demonstrate that a relatively lightweight, pre-trained

CNNmodel is capable of producing highly accurate estima-

tions of VCDR andVDD as evinced by high correlation with

clinical grading, improvedgeneticdiscovery, and further val-

idations in independent samples. Although our model was

trained on data from the white British ancestry group who

form the bulk of UKB, we believe our approach is likely to

perform acceptably in other ancestries. As part of the CNN

modeling process, we augmented and perturbed the fundus

images to increase robustness. Moreover, in the non-Euro-

pean ancestries we examined, the range of values seen for

VCDR (or VDD) was broadly similar to that in Europeans.

We were further reassured by the fact that in the models

trained in UKB white British samples, our approach per-

formed well in the independently collected CLSA data.

Our AI approach has dramatically accelerated the pace of

genetic discoveries. In our previous work,8,23 we labori-

ously manually assessed a subset of UKB images. With

the deep learningmodel trained on clinical measurements,

we were able to predict on a new subject within a fraction

of a second, making time and effort of image labeling triv-

ial, even when applied to large-scale datasets (�1 h for

�0.3million images). Sample size is one of themost impor-

tant limiting factors for genetic discovery. Leveraging the
The Americ
AI-based algorithm and large-scale data, we were able to

conduct the most powerful GWAS of optic nerve head pa-

rameters to date. We doubled the number of genome-wide

significant loci for both VCDR and VDD. Interestingly, the

estimated SNP-based heritability also increased by �50%

for VCDR and VDD (Figure S7); the estimate for VCDR is

not substantially lower than the heritability estimate

from twin studies (�50%), although given more accurate

(AI-based) phenotypes, the twin study-based heritability

estimate may increase. The increased heritability is a result

of more accurate measurements, which arise in part

because of the higher accuracy of AI-based predictions

and in part because of the AI approach’s allowing time-effi-

cient grading of multiple measures per individual.

Many of the newly identified VCDR genes are associated

with other eye traits (e.g., glaucoma, IOP, exfoliation syn-

drome, myopia). For some loci associated with IOP, it is

likely that they have an effect on VCDR as a secondary ef-

fect of the locus first acting on IOP. Loci including genes

such as ABCA1, CAV1, AFAP1, and LMX1B were associated

with VCDR for the first time; a likely explanation for this as-

sociation is that the associated variant alters IOP and subse-

quently VCDR. Over 20 of the VCDR loci are also associated

with refractive error and multiple aspects of eye physiology

are most likely involved (axial length, corneal thickness,

retinal ganglion cell function). We also found a significant

genome-wide genetic correlation between VCDR (adjusted

for VDD) and myopia (rg ¼ 0.3, p ¼ 1 3 10�14), as well as
an Journal of Human Genetics 108, 1204–1216, July 1, 2021 1211



Figure 5. AI enables new genetic discovery for optic nerve head measures
(A and B) Manhattan plot in (A) shows p values for VDD-adjusted VCDR from the meta-analysis of UKB, CLSA, and IGGC (European
ancestry). (B) shows p values for VDD from themeta-analysis of UKB, CLSA, and IGGC (European ancestry). The y axis is in log-log scale.
The red horizontal line is the genome-wide significance level at p ¼ 53 10�8. SNPs with p value less than 13 10�4 are not shown in the
Manhattan plot. Previously unknown loci are highlighted with red dots, and the nearest gene names are in black text. Known SNPs are
highlighted with purple dots, and the nearest gene names are in purple text.
with well-studied traits that are associated with myopia,

such as years of education.58

In addition, several of the new VCDR genes provide

possible links to retinal ganglion cell biology and they

may constitute possible drug repositioning candidates.

There are too many to discuss individually, but one SNP

of interest is rs17855988; this missense variant in the

elastin gene (ELN) has been associated with facial aging.

Elastin in the sclera is most dense around the optic nerve

head,59 and ELN expression has been shown to be high in

exfoliation glaucoma lens.60 A subset of the VDD loci

have been found to be associated at genome-wide signifi-

cance levels in previous glaucoma GWASs. However, in

the majority of cases, the association with glaucoma ap-

pears to be driven by the lead SNP’s having a primary effect

on VCDR (where the variance explained in VCDR for the

peak SNP is larger than that for VDD: e.g., SNPs in or near

GMDS, CAV1,MYOF, SIX6, CHEK2, TMTC2). Hence, the pri-

mary link between the disc parameters and glaucoma is via

VCDR rather than via VDD. This is also shown in the lower

genetic correlation between glaucoma and VDD (rg ¼ 0.01)

comparedwith glaucoma andVCDR (rg¼ 0.5).8,23With the
1212 The American Journal of Human Genetics 108, 1204–1216, July
high genetic correlation between VCDR and glaucoma, a

multitrait analysis has recently shown that including

VCDR can improve the power to identify glaucoma genes

and to enable the development of polygenic risk score.23

Future studies of glaucoma would benefit from incorpo-

rating these accurate AI-derived VCDR estimates.

Previous studies have looked at the differences between

VDD across different ancestries.34,35 Our results were

consistent with these: Africans had the largest disc size, fol-

lowed by those of Asian ancestry. For VCDR, an early study

(100 Black individuals and 100 white individuals) found

that Black individuals had larger VCDR (mean values:

Black ¼ 0.35, white ¼ 0.24).61 A subsequent larger study

(1,534 Black individuals and 1,853 white individuals) re-

ported larger VCDR in Black individuals (mean values:

Black ¼ 0.56, white ¼ 0.49).62 A subsequent study in three

different Asian ancestries showed that VCDR values were

similar between the studied ancestries (mean VCDR 0.40,

0.42, and 0.40 in Malay, Chinese, and Indian, respec-

tively).63 It is striking that despite VCDR’s theoretically be-

ing a simple parameter to assess, the mean VCDR varies

widely across studies, possibly because of differences in
1, 2021
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Figure 6. Comparison of the effect sizes
for VCDR (adjusted for VDD) and VDD
lead SNPs versus those observed in the
Asian ancestry group and in independent
glaucoma cohorts
(A–C) (A) and (B) show the effect sizes for
lead VCDR (adjusted for VDD) and VDD
loci (European versus Asian population).
(C) shows the effect sizes for VCDR
(adjusted for VDD) lead SNPs versus log
odds ratio in meta-analysis of IGGC glau-
coma GWAS.21 The 68 SNPs associated
with glaucoma after Bonferroni correction
(p < 0.05/230 ¼ 2.2 3 10�4) are high-
lighted with red dots, and the nearest
gene names are in black text.
measurement protocol, sex, age, and eye disease status. A

further study4 looked at the 97.5th percentile of VCDR

instead of the mean and reported broadly similar values

in the Netherlands (0.73), Bangladesh (0.7), Mongolia

(0.70), Singapore (0.7), and Tanzania (0.7). A major advan-

tage of our study is that we use our AI-derived gradings in

two population-based cohort studies to systematically

assess VCDR differences across ancestries in a consistent

study design. By leveraging large sample sizes, we are

able to clearly show both Asian and African ancestry indi-

viduals have larger VCDR values than Europeans. Our

primary results in Figure 2 correct VCDR for VDD, given

previous studies’ showing that correcting for VDD en-

hances the relevance to glaucoma.64

The raisedVCDR inAsian andAfrican ancestry individuals

living in theUKandCanada is inkeepingwith elevated glau-

coma rates in these ancestries.65 When combined with data

on IOP, a combination of VCDR and IOP explains the vast

majority of the variation between glaucoma rates in Euro-

peans relative to Africans, South Asians, and East Asians.

Although crucially, our data show (Figure 3) that the relative

contributions ofVCDRand IOP are clearly different between

all fourmajor populations groups that we consider. For indi-

viduals of European, South Asian, or African ancestry, the

vast majority of broadly defined glaucoma cases are open

angle glaucoma (OAG). In East Asia, angle closure glaucoma

(ACG) is common, and a limitation of our analysis is that we

cannot distinguish between ACG and OAG in all cases—
The American Journal of Human Ge
where available, we have removed

known cases of ACG in the broad glau-

coma definition, but some ACG cases

will remain.

A strength of our study is that we

used a large number of clinically as-

sessed images to trainthedeeplearning

model for VCDR and VDD; this al-

lowed us to generate accurate predic-

tions. Our study has shown that the

AI-basedmeasurementshaveahighac-

curacy. The AI-based optic nerve head

assessment has also boosted the avail-
able sample size and dramatically expanded gene discovery

for these key ocular phenotypes. We show that this deep

learning model can also be used to assess future fundus im-

ages automatically and rapidly, especially in population-

based studies with a large number of images. Moreover, the

implementation of transfer-learning techniques shows that

AI-aided labeling, with adequate sample size, has a potential

to deliver equally successful genetic discoveries in other im-

age-based biological phenotypes. Our study has several lim-

itations. First, although our AI approach was able to grade a

large proportion of images (particularly in theCLSA), a small

proportion remained ungradable because of poor picture

quality. Future studies couldexplore adversarial architectures

to improve clinical ratings ofVCDRandVDD.However, a set

of high-quality truth labelswould still be necessary for initial

pre-training.Moreover, althoughwewere able to use genetic

data to clearly identify the major ancestries within UKB and

CLSA (European, African, SouthAsian, andEastAsian), there

remained a group of uncategorized individuals with mixed

ancestries that we did not include in our epidemiological

or genetic analyses. Finally, we have shown the generaliz-

ability of the trainedCNNmodel inUKB to the independent

datasets in the CLSA (fundus images from the two studies

were taken with different instruments from the Topcon),

however, the robustness of themodel to other different plat-

forms/brands still needs further investigation.

To conclude, we showed that AI-based optic nerve head

assessment has a high accuracy, and this greatly improves
netics 108, 1204–1216, July 1, 2021 1213



our power to discover new genes. These findings provide

insights into the pathogenesis of glaucomatous optic neu-

ropathy. We also use the systematic assessment of VCDR

across different ancestries to help explain how the pattern

of IOP and VCDR measures underpin observed glaucoma

risk; such findings in mixed ancestry groups living in the

UK and Canada help explain the differing characteristics

of glaucoma across ancestries. For example, relative to Eu-

ropeans, individuals with East Asian ancestry are more

likely to have lower IOP and increased VCDR. Given these

East Asians are genetically similar to East Asians in coun-

tries such as China and Japan, this provides support for

the assertion that normal tension forms of glaucoma pre-

dominate in East Asia because of genetic predisposition

for high VCDR despite low IOP.
Data and code availability

UK Biobank data are available through the UK Biobank Access

Management System (https://www.ukbiobank.ac.uk/). We will re-

turn the derived vertical cup-to-disc ratio and vertical disc diam-

eter values following the UK Biobank policy, and in due course,

they will be available through the UK Biobank Access Manage-

ment System. Data are available from the Canadian Longitudinal

Study on Aging (https://www.clsa-elcv.ca) for researchers who

meet the criteria for access to de-identified CLSA data. Relevant

code can be found at the following GitHub repository: https://

github.com/MaxKelsen/Glaucoma-Phenotype-ML-estimation.

The GWAS summary statistics frommeta-analysis are available for

research use at https://xikunhan.github.io/site/publication/.
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