
ARTICLE

Large-scale machine-learning-based phenotyping
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Summary
Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and

variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color fundus pho-

tographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glau-

coma, in 65,680 Europeans in the UK Biobank (UKB). A GWAS of ML-based VCDR identified 299 independent genome-wide significant

(GWS; p% 53 10�8) hits in 156 loci. TheML-based GWAS replicated 62 of 65 GWS loci from a recent VCDRGWAS in the UKB for which

two ophthalmologists manually labeled images for 67,040 Europeans. The ML-based GWAS also identified 93 novel loci, significantly

expanding our understanding of the genetic etiologies of glaucoma and VCDR. Pathway analyses support the biological significance

of the novel hits to VCDR: select loci near genes involved in neuronal and synaptic biology or harboring variants are known to cause

severe Mendelian ophthalmic disease. Finally, the ML-based GWAS results significantly improve polygenic prediction of VCDR and pri-

mary open-angle glaucoma in the independent EPIC-Norfolk cohort.
Introduction

Genome-wide association studies (GWASs) require accu-

rate phenotyping of large cohorts, but expert phenotyping

can be costly and time intensive. On the other hand, self-

reported phenotyping, while cost-effective and often

insightful,1 can be inaccurate for nuanced phenotypes

such as osteoarthritis2 or infeasible to obtain for complex

quantitative phenotypes. Population-scale biobanks, such

as the UK Biobank (UKB)3 and Biobank Japan,4 that

contain genomics, biomedical data, and health records

for hundreds of thousands of individuals provide opportu-

nities to study complex disorders and traits.5 GWASs of in-

dividual blood- and urine-based biomarkers, which can be

assayed accurately with high throughput, have shed light

on disease etiology.6,7

Advances in deep learning have enabled the extraction

of medically relevant features from high-dimensional

data, such as using cardiac magnetic resonance imaging

to infer cardiac and aortic dimensions,8 color fundus pho-

tographs to detect glaucoma risk,9 and optical coherence

tomography images to predict age-related macular degen-

eration progression.10 Using medically relevant features

extracted from biobank data by machine learning (ML)

models as GWAS phenotypes provides an opportunity to

identify genetic signals influencing these traits. For

example, Glastonbury et al. trained an ML model to pre-
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dict mean adipocyte areas from histology images and

used the predictions to perform a GWAS, doubling the

cohort size in comparison to similar studies.11

Here, we propose training anMLmodel to automatically

phenotype a large cohort for genomic discovery. The pro-

posed paradigm has two phases: in the ‘‘model training’’

phase, a database of expert-labeled samples (for which ge-

nomics data are not required) is used to train and validate a

phenotype prediction model (Figure 1A); in the ‘‘model

application’’ phase, the model is applied to biobank data

to predict phenotypes of interest, which are then analyzed

for genomic associations (Figure 1B). This paradigm has

several advantages. First, model application is scalable

and efficient. Second, a single model can predict multiple

phenotypes simultaneously. Third, the model can be

applied retrospectively to existing data, resulting in new

phenotypes or more accurate predictions for the existing

phenotypes. Fourth, multiple lines of evidence can be inte-

grated to predict a single phenotype, which would be pro-

hibitively expensive if performed manually.

As a proof of concept, we investigate predicting glau-

coma-related features from fundus images and performing

genomic discovery on the predicted features. Glaucoma is

an optic neuropathy that results from progressive retinal

ganglion cell degeneration12 and is the leading cause of

irreversible blindness globally,13 affecting more than 80

million people worldwide.14 Moreover, glaucoma is one
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Figure 1. ML-based phenotyping concept and its application to VCDR
(A) ‘‘Model training’’ phase in which a phenotype prediction model is trained with expert-labeled data.
(B) ‘‘Model application’’ phase in which the validated phenotype prediction model is applied to new, unlabeled data followed by
genomic discovery.
(C) Definition of vertical cup-to-disc ratio (VCDR) in a real fundus image.
(D) Schematic of the multi-task ensemble model used in phenotype prediction.
(E–H) Scatterplots of theML-based VCDR versus expert-labeled VCDR values for the train (E), tune (F), test (G), and UK Biobank (H) data-
sets. Number of grades per image is shown in parentheses.
of the most heritable common human diseases, with heri-

tability estimates of 70%,15 and there is evidence for effec-

tive genomic risk prediction.16,17

The hallmark diagnostic feature of glaucoma is optic

disc cupping.12 The vertical cup-to-disc ratio (VCDR;

Figure 1C), a quantitative indicator for optic nerve head

morphology and a frequently reported quantitative mea-

sure of cupping, is an important endophenotype of glau-

coma.18–21 With the advent of very large biobank studies

and routine retinal imaging in community optometric

practices, there is huge potential for furthering our under-

standing of glaucoma through population-level analysis of

VCDR. However, human grading of optic disc images to

ascertain VCDR is costly and extremely resource intensive

at large scale because it requires expert knowledge and de-

ciphering the optic cup margin is challenging.

Here, we developed an ML model using 81,830 non-

UKB, ophthalmologist-labeled fundus images to predict

image gradability, VCDR, and referable glaucoma risk. We

used the model to predict VCDR in 65,680 UKB partici-
1218 The American Journal of Human Genetics 108, 1217–1230, July
pants of European ancestry from 175,337 fundus images.

We then performed a GWAS on the ML-based VCDR

phenotype (hereafter, ‘‘ML-based GWAS’’) and compared

the results to prior VCDR GWASs, including a recent

VCDR GWAS using phenotypes derived from expert-

labeled UKB fundus images.17 We show that ML-based

phenotypes are accurate and substantially more efficient

to obtain than expert-phenotyped VCDR measurements,

identify novel genetic associations with plausible links to

known VCDR biology, and produce more accurate poly-

genic risk scores for predicting VCDR in an independent

population.
Methods

Model training and validation
We followed the procedure described previously by Phene et al.,9

modifying only to remove all UKB images. Briefly, we used

81,830 color fundus images from AREDS,22 EyePACS (see web
1, 2021



resources), Inoveon (see web resources) from the United States,

and two eye hospitals in India (Narayana Nethralaya and Sankara

Nethralaya). Ethics review and institutional review board exemp-

tion was obtained via Quorum Review Institutional Review Board.

We trained ten independent multi-task Inception v323 deep con-

volutional neural networks on the fundus images, using weights

learned from the Image Net dataset24 as pre-trained weights for

the convolutional layers. For each of the ten models, a different

random seed, which randomly changes the ordering of the

training data and selection of mini-batches, the random initializa-

tion of the last layers of the neural network, and random image

augmentation and dropout patterns, was used. Furthermore, we

performed image augmentation25 and early stopping26 based on

mean squared error (MSE) for predicting VCDR on the tune dataset

for picking the best model. The final prediction model is the

average prediction of the ten models in the ensemble.

Phenotype calling in the UK Biobank cohort
We included UKB participants with color fundus images. After

making predictions for 175,337 images, 21,400 were predicted to

be ungradable and were removed. Individual-level VCDR values

were computed as the average per-eye VCDR within a single visit,

with preference for the initial visit (supplemental information).

Genome-wide association study
We used BOLT-LMM v.2.3.427,28 to examine associations between

genotype and ML-based VCDR in European individuals in UKB by

using the –lmm parameter to compute the Bayesian mixed model

statistics. We used all genotyped variants with minor allele fre-

quency > 0.001 to perform model fitting and heritability estima-

tion. We performed rank-based inverse normal (INT) transforma-

tion to the ML-based VCDR phenotype to increase the power for

association discovery.29 Finally, in our association study, we used

sex, age at visit, visit number (i.e., 1 or 2 to indicate visit 1 or visit

2), number of eyes used to compute VCDR, genotyping array indi-

cator, refractive error, average gradability scores of all fundus im-

ages included for each participant, and the top 15 genetic prin-

cipal components as covariates.

Detecting independent genome-wide significant loci
Genome-wide significant (GWS; p % 5 3 10�8) lead SNPs, inde-

pendent at R2 ¼ 0.1, were identified via PLINK’s –clump command

(see web resources). The reference panel for linkage disequilibrium

(LD) calculation contained 10,000 unrelated subjects of European

ancestry from the UKB. Loci were formed around lead SNPs on the

basis of the span of reference panel SNPs in LD with the lead SNPs

at R2 R 0.1. Loci separated by fewer than 250 kb were subse-

quently merged.

SNP-heritability estimates for ML-based VCDR
We computed the SNP heritability for ML-based VCDR by

applying stratified LD score regression30 on the VCDRGWAS sum-

mary statistics while using the 75 baseline LD annotations pro-

vided by S-LDSC authors (see web resources).

Replication of existing loci
Loci for ML-based VCDR and comparator studies were formed as

described above, and the common reference panel of 10,000

randomly selected unrelated subjects from the UKB. Replication

was assessed via the proportion of ML-based VCDR loci that over-

lapped with comparators and the proportion of comparator loci
The Americ
that overlapped with the ML-based VCDR loci. Thus, replication

required that both studies had a GWS variant within a common

genomic region, although not necessarily the same variant. Loci

reaching GWS in the ML-based VCDR but not identified in any

comparator GWASs of VCDR analyzed here are hereafter referred

to as ‘‘novel loci.’’
Mendelian randomization and mediation analyses
We performed two sample Mendelian randomization analysis, im-

plemented via TwoSampleMR (see web resources), to examine the

causal association between intraocular pressure (IOP), as assessed

by Khawaja et al.,16 and ML-based VCDR. Per-SNP associations

were meta-analyzed via Egger regression.31

We performedmediation analysis to estimate the association be-

tweenML-based VCDR and glaucoma, as assessed by Gharahkhani

et al.32 Mendelian randomization is in fact a special case of medi-

ation analysis in which the instrumental variables (here, SNPs)

have no effect on the outcome (here, glaucoma) other than

through the mediator (here, ML-based VCDR). Our mediation

analysis differs from Mendelian randomization in that, because

limited availability of summary statistics from Gharahkhani

et al., the SNP set was defined on the basis association with the

mediator (ML-based VCDR) rather than the outcome (glaucoma).

Among the 118 independent, significant glaucoma SNPs identi-

fied by Gharahkhani et al., 116 remained after harmonizing

with VCDR. To account for probable direct effects of the candidate

SNPs on glaucoma odds, for example via IOP, we again meta-

analyzed the per-SNP associations via Egger regression.
VCDR polygenic risk score
We developed two polygenic risk scores (PRSs) by using the prun-

ing and thresholding (PþT)33 and elastic net34 methods. The UKB

test cohort was graded with the same guidelines used in grading

other datasets used in this study. The HRT-derived VCDR was

examined and, for participants with good quality scans in both

eyes, the mean value of right and left eyes was considered, as pre-

viously described.35 Genotyping was carried out on the Affymetrix

UK Biobank Axiom array, as previously described.36

In the PþTmodel, we used a set of variants common to the UKB

and EPIC-Norfolk cohorts. EPIC-Norfolk’s imputation was per-

formed with the HRC v.1 panel and excludes indels;37 thus, to

harmonize the variants, we filtered out variants from Craig et al.

and our ML-based GWAS not present in EPIC-Norfolk. This re-

sulted in 58 variants from the 76 reported variants from the Craig

et al. GWAS (i.e., 18 variants were dropped) and 282 of the 299 var-

iants from our ML-based GWAS (i.e., 17 fewer variants).

In the elastic model, we used the ML-predicted VCDR as the

target label from the 62,969 UKB training samples to train the

elastic model. For Craig et al., we used 76 variants that included

the 58 variants from the PþT model and 18 additional proxy var-

iants that are in high LD (R2 R 0.6) with the 18 variants dropped

from the Craig et al. PþT model. The same set of 282 variants used

in PþT was used for the ML-based model. We performed 5-fold

cross validation and used the L1-penalty ratios of [0.1, 0.5, 0.7,

0.9, 0.95, 0.99, 1.0].
Glaucoma liability conditional analysis
We defined glaucoma risk liability as the logit transform of the

highest-level of ML-based glaucoma probability (‘‘likely glau-

coma’’; supplemental information) as
an Journal of Human Genetics 108, 1217–1230, July 1, 2021 1219



g¼ log

�
p

1� p

�
;

where p and g denote ML-based glaucoma risk probability and lia-

bility, respectively. We performed conditional analysis on ML-

based glaucoma risk liabilities by using BOLT-LMM conditional

on ML-based VCDR. In this conditional analysis, we additionally

adjusted for the same covariates used in the primary ML-based

VCDR GWAS.
Glaucoma subtypes prediction in the EPIC-Norfolk

cohort
We analyzed 5,868 participants from the EPIC-Norfolk Eye Study

cohort whowere genotyped via the Affymetrix UK Biobank Axiom

array, met inclusion criteria and quality control, and had scanning

laser ophthalmoscopy VCDR measurements (supplemental infor-

mation). Included participants had a mean age of 68 years (SD ¼
7.7, range 48–90), 55% were women, and the mean VCDR was

0.34 (SD ¼ 0.23). Of the 5,868 samples, 175 were classified as pri-

mary open-angle glaucoma (POAG) cases (see supplemental infor-

mation for detailed POAG criteria), of which 98 were classified as

high tension glaucoma (HTG; IOP > 21 mmHg) and 77 as normal

tension glaucoma (NTG; IOP % 21 mmHg) on the basis of the

corneal-compensated IOP at the Eye Study assessment. Pre-treat-

ment IOP was imputed by dividing by 0.7 for participants using

glaucoma medication at the time of assessment, as previously

described.16

We extracted age, sex, POAG status, NTG status, and HTG status

from all 5,868 samples. We fitted independent logistic regression

models to predict POAG, HTG, and NTG statuses by using VCDR

PRS, age, and sex as predictors. We considered both the ML-based

elastic net VCDR PRS and the Craig et al. elastic net PRS described

above.
Results

Overview of the ML-based phenotyping method

We used 81,830 fundus images graded by a panel of experts

that passed our labeling guideline assessment (supple-

mental information) to train a phenotype prediction

model that jointly predicts image gradability, VCDR, and

referable glaucoma risk (Figure 1D). We split these images

into ‘‘train,’’ ‘‘tune,’’ and ‘‘test’’ sets; training images were

graded by one to two eye care providers with varied exper-

tise, while images in the two latter sets were each graded by

three glaucoma specialist experts. We benchmarked model

performance on all data splits (Figures 1E–1G; Table S1).

On the test set of 1,076 test images, the model achieved

a Pearson’s correlation of R ¼ 0.91 between predicted and

graded VCDR (95% confidence interval [CI] ¼ 0.90–0.92)

and root mean square error (RMSE) of 0.079 (95% CI ¼
0.074–0.085). Additionally, we validated model generaliz-

ability on 2,115 UKB fundus images each graded by two

to three experts (hereafter, ‘‘UKB test set’’), which achieved

similar predictive performance to the test set (Figure 1H; R

¼ 0.89, 95% CI ¼ 0.88–0.90; RMSE ¼ 0.092, 95% CI ¼
0.088–0.096; Table S1). We also validated that the model

generalizes across ancestries in a larger set of 4,816 UKB

fundus images with at least one manual grade (Figure S1).
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ML-based GWAS replicates a manual phenotyping

VCDR GWAS and discovers 93 additional novel loci

We applied the VCDR prediction model to the entire set

of 175,337 UKB fundus images. Most images were either

predicted to be easily gradable (predicted gradability >

0.9) or completely unusable (predicted gradability < 0.2)

(Figure S2). We classified all 21,400 images with predicted

gradability < 0.7 as ‘‘ungradable.’’ Manual inspection of

100 randomly selected ungradable images showed they

were typically completely dark, bleached white, or

extremely out of focus. After removing the 21,400 ungrad-

able images, aggregating predicted VCDR values across left

and right eyes and the first and second visits for each indi-

vidual, subsetting the cohort to individuals of European

ancestry, and performing cohort quality control, a cohort

of 65,680 individuals with VCDR phenotype remained

for further analysis (supplemental information, Figures

S3 and S4). To control for confounding factors (e.g., popu-

lation structure) and increase power, we added age at the

time of visit, sex, average image gradability, number of

fundus images used in VCDR calculation, normalized

refractive error, genotyping array type, and the top 15 ge-

netic principal components as covariates.

We performed the ML-based GWAS by using BOLT-LMM

(supplemental information). While genomic inflation DGC

was 1.20 (Figure S5), the stratified LD score regression-

based (S-LDSC) intercept30 was 1.06 (SEM ¼ 0.02), indi-

cating that most test statistic inflation can be attributed

to polygenicity rather than population structure. The

SNP-based heritability in the ML-based GWAS was 0.43

(SEM ¼ 0.03), a majority of the 56% heritability estimated

for VCDR by twin and family-based studies (Asefa et al.,

2019)38. The ML-based GWAS identified 299 independent

genome-wide significant (GWS) hits (R2 % 0.1, p %

5 3 10�8) at 156 independent GWS loci after merging

hits within 250 kb together (Figure 2A, Tables S2 and S3).

Based on sum of single effects regression,39 the number

of causal variants within the 156 independent GWS loci

was conservatively estimated at 813 (supplemental infor-

mation; Tables S4 and S5).

To understand the influence of training dataset size on

model performance and GWAS results, we retrained the

ML model with as little as 10% of the full training set. Per-

formance curves indicate that using fewer than 8,000

training images achieved a Pearson’s correlation R ¼ 0.83

(95% CI ¼ 0.81–0.84) on the UKB test set, identified 131

GWS loci, and replicated 123 of the 156 loci identified in

the full model (Figures S6 and S7). An analysis of the impli-

cations of phenotyping accuracy on genomic discovery

suggested that the difference in power for the model

trained with 10% of the training data and the model

trained with all data would maximally reach 15%

(Figure S8).

Next, we compared the ML-based GWAS results with

those from the two largest existing VCDR GWASs. First,

we compared with the VCDR meta-analysis from the

International Glaucoma Genetics Consortium (IGGC) in
1, 2021
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Figure 2. ML-based VCDR GWAS results and comparison to known associations
(A) Manhattan plot depicting ML-based VCDR-associated GWAS p values from the BOLT-LMM analysis. There are 156 GWS (genome-
wide significant) loci, representing 299 independent (R2¼ 0.1) GWS hits. For each locus, the closest gene is shown. Blue gene names and
dots indicate loci also identified in the Craig et al. study17 and red dots and black gene names indicate novel loci. The dashed red line
denotes the GWS p value, 5 3 10�8.
(B) Venn diagramof loci overlap for three VCDRGWASs.ML-basedGWAS replicates all 22 loci of the IGGCVCDRmeta-analysis20 and 62
of 65 loci identified by Craig et al.,17 while discovering 93 novel loci (supplemental information).
(C) Effect sizes for the 73 GWS hits shared by the Craig et al.17 andML-based VCDR GWAS. The three Craig et al. hits not included failed
the ML-based GWAS QC (rs61952219 for low imputation quality and rs7039467 and rs146055611 for violating Hardy-Weinberg equi-
librium). Blue and red dots denote the SNP’s beingmore significant in theML-based and Craig et al. GWAS, respectively. Error bars depict
standard errors. The banding in Craig et al. effect sizes is due to large effect sizes’ being reported in multiples of 0.01. The blue line is the
best fit line and the shaded area shows the 95% confidence interval.
23,899 Europeans20 for which all summary statistics are

publicly available (see web resources). The ML-based

GWAS replicated all 22 GWS loci and exhibited strong ge-

netic correlation (0.95, SEM ¼ 0.03, p¼ 2.13 10�167) with

the IGGC GWAS (Figure 2B, Table 1), and effect size regres-

sion analysis showed a slope significantly different from

zero (slope¼ 0.983, SEM¼ 0.041, p¼ 13 10�61) and indis-

tinguishable from one (p ¼ 0.67; Figure S9; supplemental

information). Second, we compared with a GWAS on

67,040 manually phenotyped UKB fundus images17 for

which only the independent genome-wide significant
The Americ
SNPs are publicly available. The ML-based GWAS repli-

cated 62 out of 65 GWS loci with very similar estimated ef-

fect sizes (Figures 2B and 2C, Table 1) and more significant

p values (Figure S10). The p values and effect sizes of the

novel loci are shown in Figure S11. The three loci not repli-

cated at the GWS level in the ML-based GWAS were all

Bonferroni-replicated (adjusting for 65 tests), and p values

ranged from 5.53 10�8 to 6.63 10�5. Third, we compared

our results with a meta-analysis of the Craig et al. and

IGGC VCDR GWASs.17 The ML-based GWAS replicated

82 of the 90 loci at GWS level, and the remaining eight
an Journal of Human Genetics 108, 1217–1230, July 1, 2021 1221



Table 1. Replicated loci of ML-based VCDR GWASs and meta-analysis at GWS level

Discovery GWAS details

Number of loci replicated
in ML-based VCDR GWAS

Number of loci replicated
in ML-based þ IGGC VCDR
GWAS

S-LDSC-based genetic
correlation with
ML-based VCDRStudy (phenotype)

Number of
participants Loci

ML-based (VCDR) 65,680 156 – 151 –

ML-based 10% (VCDR) 65,044 131 123 125 0.99 (2.1 3 10�3)

ML-based þ IGGC20 (VCDR) 89,579 189 151 – 0.97 (2.6 3 10�3)

IGGC20 (VCDR) 23,899 22 22 22 0.95 (0.03)

Craig et al.17 (VCDR) 67,040 65 62 63 N/A

Craig et al.17 þ IGGC20 (VCDR) 90,939 90 82 85 N/A

Khawaja et al.16 (IOP) 139,555 107 14 22 0.19 (0.02)

Gharahkhani et al.32 (POAG) 383,500 118 32 40 N/A

‘‘ML-based 10% (VCDR)’’ denotes the GWAS performed on VCDR predictions of the ML model trained with only 10% of the training data. ‘‘ML-based þ IGGC
(VCDR)’’ denotes meta-analysis of ML-based and IGGC VCDR GWAS. Likewise, ‘‘Craig et al.þ IGGC (VCDR)’’ denotes meta-analysis of Craig et al. VCDR and IGGC
VCDR GWAS. Genetic correlation was only computed when the full set of summary statistics were available.
loci were Bonferroni-replicated with and had p values

ranging from 1.4 3 10�7 to 6.6 3 10�5 (Table 1).

Finally, we performed a meta-analysis of our ML-based

GWAS with the IGGC VCDR GWAS, which resulted in

189 GWS loci (supplemental information; Table 1 and

Tables S6 and S7). This ML-based meta-analysis replicated

63 out of 65 of Craig et al.’s discovery GWAS and 85 out

of 90 Craig et al.’s meta-analysis at GWS level (Table 1).

Taken together, these comparisons demonstrate that the

ML-based GWAS accurately identifies known VCDR associ-

ations and additionally identifies over 90 novel loci

(Figure 2B, Table S8), substantially increasing our under-

standing of the genetic underpinnings of this complex

trait.

To assess the biological plausibility of the novel loci

identified in the ML-based GWAS, we compared gene set

enrichment analyses of the 156 ML-based loci to those of

the 65 Craig et al. loci by using FUMA.40 Nine eye-related

gene sets were significantly enriched in both sets of loci.

The enrichment odds ratios (ML-based enrichment over

Craig et al. enrichment) of all nine gene sets were greater

than one, suggesting improved identification of function-

ally relevant pathways in the ML-based loci (Figure S12).

To assess effects of distal cis-regulatory interactions, we

also performed enrichment analyses of the 156 ML-based

loci and the 65 Craig et al. loci by using GREAT.41 Consis-

tent with the FUMA results, the ML-based loci were more

significantly enriched than the Craig et al. loci across all

tested ontologies (Figure S13). The ML-based loci were

significantly enriched for 22 gene sets, the majority of

which are developmental and seven of which are eye

related (Table S9). In contrast, the Craig et al. loci were

significantly enriched for only three gene sets; two of these

are eye-related sets that were also enriched in theML-based

results (Table S9).

Lastly, we performed a phenome-wide association study

(PheWAS) over all 299 independent GWS hits by using

OpenTargets (web resources). OpenTargets reported
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62,753 (variant, phenotype) pairs that were nominally sig-

nificant (p % 0.05); after Bonferroni correction, 974 pairs

were significant (supplemental information). We observed

that 314 of the 974 significant pairs belonged to the

‘‘anthropometric measurement’’ trait category, while the

‘‘eye measurement’’ category had 101 pairs (Table S10).

Biological significance of select novel VCDR-associated

loci

Several of the VCDR-associated loci discovered in this

study are known to be associated with intraocular pressure

(IOP), including rs1361108 near CENPW,42 rs2570981 in

SNCAIP,42 rs6999835 near PKIA,16 and rs351364 in

WNT2B.16 This suggests that a proportion of the genetic

variation in VCDR is mediated via IOP and pathophysio-

logical processes affecting the anterior segment of the

eye, consistent with IOP’s being a strong risk factor for

glaucoma.43 Indeed, we observed that 13% (14 of 107) of

the GWS loci from the latest IOP meta-analysis16 were

GWS in the ML-based VCDR GWAS. In addition, the over-

all genetic correlation between our ML-based VCDR

GWAS and the IOP GWAS meta-analysis is 0.19 (SEM ¼
0.02, p ¼ 5.5 3 10�15), indicating that VCDR is partially

explained by IOP. Moreover, a Mendelian randomization

(MR) analysis followed by Egger regression31 suggests

that IOP has a strong directional association with ML-

based VCDR: the regression intercept does not differ

significantly from zero (intercept ¼ 0.001, SE ¼ 0.002,

p ¼ 0.7), but the slope does (slope ¼ 0.072, SE ¼ 0.020,

p ¼ 4 3 10�4). The reverse analysis provided no evidence

for a directional association between ML-based VCDR and

IOP (supplemental information; Figure S14).

VCDR is an objective quantification of the proportion of

neuronal tissue at the head of the optic nerve (Figure 1C).

Interestingly, several VCDR-associated loci discovered in

this study encompass genes involved in neuronal and syn-

aptic biology, and thus may influence VCDR via direct ef-

fects on the retina and optic nerve rather than via IOP.
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NCKIPSD (rs7633840) is involved in the formation and

maintenance of dendritic spines, and modulates synaptic

activity in neurons.44 CPLX4 (rs77759734) is required for

the maintenance of synaptic ultrastructure in the adult

retina.45 MARK2 (rs199826712) has roles in neuronal cell

polarity and the regulation of neuronal migration.46

These loci complement additional neuronal loci also

discovered by Craig et al.; some notable examples include

MYO16 (rs10162202), TRIM71 (rs56131903), and FLRT2

(rs1289426). An increase in VCDR may be due not only

to loss of retinal ganglion cell neurons but also loss of neu-

ral supporting tissue, such as glial cells. One of our novel

VCDR-associated loci is an indel on chromosome 8 (chr8:

131,606,303_CTGTT_C), near ASAP1; this locus has been

associated with glioma,47 suggesting glial cells as potential

mediators of the VCDR association.

Several genes at the novel VCDR-associated loci harbor

mutations that cause severe Mendelian ophthalmic dis-

ease. Here, for the first time, we report common variants

at these genes that are associated with VCDR variation at

a population level. Three of our novel loci are at

ADAMTSL3 (rs59199978), PITX2 (rs2661764), and

FOXC1 (rs2745572), all of which are associated with syn-

dromic ocular anterior segment dysgenesis, which in

turn causes raised IOP and secondary glaucoma.

ADAMTSL3 is an important paralog of ADAMTSL1—which

itself is also associated with VCDR in our GWAS. A muta-

tion in ADAMTSL1 has been reported to cause inherited

anterior segment dysgenesis and secondary congenital

glaucoma.48 Mutations in PITX2 and FOXC1 cause Axen-

feld-Rieger syndrome.49 Common variants at these loci

may mark more subtle effects on ocular anterior segment

development, resulting in subclinical changes in IOP and

VCDR that are apparent on a population level. While

FOXC1 variants have been previously associated with

glaucoma,50 this is the first time they have been associated

with population variation in VCDR. Mutations in PRSS56,

a gene at one of our novel VCDR-associated loci, cause

microphthalmia in humans.51 Another two of our

VCDR-associated loci are at EYA1 and EYA2 (eyes absent

homologs 1 and 2), genes that are important for eye

development in Drosophila. EYA1 has been implicated in

ocular anterior segment anomalies and cataract.52 We

also replicate some of the loci identified by Craig et al.,

such as ELP4, which has been associated with aniridia,53

a condition characterized by the absence of an iris and

that can predispose patients to glaucoma.53,54

ML-based GWAS improves VCDR polygenic risk scores

We developed PþT and elastic net PRSs for both the ML-

based VCDR GWAS and the Craig et al. GWAS (Tables

S11–S14). These PRSs were evaluated in two test sets: a

holdout set of 2,076 subjects from UKB with VCDR

measured by two to three experts and a set of 5,868 sub-

jects from the European Prospective Investigation into

Cancer Norfolk (EPIC-Norfolk) cohort with VCDR

measured by scanning laser ophthalmoscopy (HRT).55
The Americ
Because the EPIC-Norfolk imputation was done with the

HRC v.1 (Haplotype Reference Consortium) panel, which

excludes indels,37 we subset theML-based GWAS summary

statistics to HRC v.1.

For the PþT model, subsetting to HRC v.1 results in 282

hits, down from 299 original hits. With the effect sizes

from the ML-based GWAS (Table S11), this model achieves

a Pearson’s correlation R ¼ 0.37 (95% CI ¼ 0.33–40) in the

UKB adjudicated cohort. The PþT model from the Craig

et al. GWAS does not include 18 out of 76 SNPs (absent

in HRC v.1) and achieves a Pearson’s correlation R ¼ 0.29

(95% CI ¼ 0.25–0.33). The performance metrics of the

ML-based Craig et al. PþT models when not subset to

HRC v.1 are shown in Figure S15. Performance in the

EPIC-Norfolk set was slightly lower, but the PþTmodel still

explained 9.6% of the total variance (Figure 3A). In both

sets, the ML-based PþT model outperformed the Craig

et al. PþT model (UKB: DR ¼ 0.079, p < 0.031, n ¼
2,076; EPIC: DR¼ 0.082, p< 5.93 10�4, n¼ 5,868, permu-

tation test).

We then used the ML-based VCDR values from UKB to

train elastic net models; after removing all images used in

building the adjudicated test set, the training set contained

62,969 samples. In contrast to the PþT model in which

GWAS marginal effect sizes are used as PRS weights, elastic

net jointly learns all weights in a supervised manner. To

make up for the 18 missing Craig et al. SNPs, we identified

LD-based proxies for all of the missing hits in HRC v.1 and

included them in training the elastic net model. The ML-

based elastic net model (Table S12) numerically improved

upon the PþT model in both UKB (R ¼ 0.38, 95% CI ¼
0.34–0.41) and EPIC (R ¼ 0.33, 95% CI ¼ 0.30–0.35) sets

(Figure 3B). The elastic net model explains 14.2% and

10.6% of total VCDR variation in the UKB and EPIC-Nor-

folk sets, respectively. The Craig et al. elastic net model

has a more pronounced improvement—probably because

of the addition of proxy SNPs—but the ML-based model

still significantly outperforms it (UKB: DR ¼ 0.064, p <

9.6 3 10�3, n ¼ 2,076; EPIC: DR ¼ 0.053, p < 6.8 3 10�4,

n ¼ 5,868, permutation test).

Relationship of primary open-angle glaucoma and VCDR

To study the relationship between primary open-angle

glaucoma (POAG) and VCDR, we defined POAG status in

UKB by using a combination of self-report and hospital

episode International Classification of Diseases 9/10 codes

(supplemental information). ML-based VCDR has moder-

ate predictive power for POAG with an area under the

ROC curve (AUC) of 0.76 (n ¼ 65,193, 95% CI ¼ 0.74–

0.78, POAG prevalence ¼ 1.9%) and area under the preci-

sion-recall curve (AUPRC) of 0.14 (95% CI ¼ 0.12–0.16).

After binning individuals by ML-based VCDR, we

computed odds ratios (ORs) in each bin versus the bottom

bin (Figure 4A). The most extreme bin (VCDR > 0.7, n ¼
385), which corresponds to a diagnostic criterion for glau-

coma,18 has an OR of 74.3 (95% CI¼ 57.0–94.3) versus the

bottom bin (VCDR < 0.3, n ¼ 30,752).
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Figure 3. VCDR polygenic risk score performance metrics
(A and B) Pearson’s correlations between measured VCDR values and predictions of the pruning and thresholding (PþT) (A) and the
elastic net models (B) are shown for the PRS learned from ML-based and Craig et al.17 hits. Error bars depict 95% confidence intervals.
Numbers above bars are the observed Pearson’s correlations. Indications of p value ranges (permutation test): *p% 0.05, **p% 0.01, ***p
% 0.001. The Craig et al. PþT model uses 58 out of 76 hits. Measured VCDR values were obtained from adjudicated expert labeling of
fundus images (UKB, n ¼ 2,076) and scanning laser ophthalmoscopy (HRT) (EPIC-Norfolk, n ¼ 5,868).
We then performed mediation analysis (MA) to study

the association of VCDR with glaucoma. Similar to MR,

MA evaluates the association between an intermediary or

mediating phenotype (here, VCDR) and an outcome

phenotype (here, glaucoma). However, whereas in MR

the SNP set is selected on the basis of association with

the mediator, because of the limited availability of glau-

coma summary statistics from the study by Gharahkhani

et al.,32 the SNP set for MA was selected on the basis of as-

sociation with the outcome. Because, contrary to MR’s

exclusion restriction, the included SNPs may have affected

glaucoma through a pathway other than VCDR (e.g., IOP),

the per-SNP estimates of association were meta-analyzed

with Egger regression (Egger et al., 199731), which is

robust to this assumption.56 The Egger slope of 5.7

(SE ¼ 1.8, p ¼ 3 3 10�3) differs significantly from zero,

providing evidence that VCDR, as ascertained by our ML-

based models, is strongly associated with the odds of glau-

coma (Figure S16). We note that the Egger intercept of 0.04

also differs significantly from zero (p ¼ 7 3 10�7), indi-

cating the presence of directional pleiotropy; that is, vari-

ants included in the analysis, on average, were associated

with an increase in the odds of POAG through a pathway

other than VCDR.

As shown above, VCDR is an informative endopheno-

type for glaucoma, and we hypothesize that its PRS should

also be predictive of POAG. Indeed, 32 out of 118 loci pre-

viously associated with POAG32 were significantly associ-

ated with ML-based VCDR in this study. We applied the

ML-based elastic net model to the UKB individuals of Euro-

pean ancestry that do not have fundus images (n¼ 98,151)

to estimate their genetic VCDR. As expected, this

genetic model performs noticeably worse than the model

using a direct measurement of the VCDR phenotype

(AUC ¼ 0.56, 95% CI ¼ 0.55–0.57, AUPRC ¼ 0.07, 95%

CI ¼ 0.066–0.073, n ¼ 98,151, POAG prevalence ¼
5.5%). Nonetheless, when we binned samples by VCDR

elastic net PRS, participants in the highest bin (PRS Z >

2.5, n ¼ 567) had a considerably higher POAG prevalence
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(OR ¼ 3.4, 95% CI ¼ 2.6–4.3; Figure 4B) than those in the

lowest bin (PRS Z < �0.1, n ¼ 46,136).

In addition to VCDR, the ML model was trained to pre-

dict referable glaucoma risk;9 this model output can be in-

terpreted as the probability a specialist would refer an indi-

vidual for detailed glaucoma evaluation. Because the

model output is a continuous value, we can evaluate the

contribution of features other than VCDR to referable glau-

coma risk by regressing out the VCDR signal.We computed

glaucoma risk liability as the logit transform of the ML-

based glaucoma probability, which is highly correlated

with ML-based VCDR (Figure 4C, Pearson’s R ¼ 0.91, n ¼
65,680, p< 13 10�300). While a large VCDR is the cardinal

feature of a glaucomatous optic nerve, there are other fea-

tures that suggest glaucoma that are difficult to quantify

(e.g., bayoneting or baring of blood vessels and hemor-

rhages). To examine the genetic associations with glau-

comatous optic disc features other than VCDR, we carried

out a GWAS of ML-based glaucoma risk conditioned on

ML-based VCDR by using BOLT-LMM. The observed SNP

heritability was 0.062 (SEM ¼ 0.013) with genomic infla-

tion of 1.04 and S-LDSC-based intercept of 1.01 (SEM ¼
9.8 3 10�3; Figure S17) and the GWAS identified eight

GWS loci (Tables S15 and S16). Interestingly, two of these

loci, OCA2-HERC2 (Figure 4D; rs12913832, p ¼ 2.2 3

10�66) and TYR (rs1126809, p ¼ 5.8 3 10�13), have been

previously associated with macular inner retinal thickness

(retinal nerve fiber layer and ganglion cell inner plexiform

layer) as derived from UKB optical coherence tomography

images.57 These inner retinal parameters have diagnostic

utility for glaucoma that is considered complementary to

VCDR and may be particularly efficacious at detecting

early glaucoma.58 Moreover, it is not currently possible to

ascertain the thickness of the inner retina from fundus im-

ages, which are two-dimensional. Together, this suggests

that ML-based phenotyping has the potential to identify

glaucoma-related features from fundus images that are

complementary to VCDR and not typically gradable by

humans.
1, 2021



R=0.91
n=65,680

0.0 0.5 1.0

−12

−8

−4

0

4

ML-based VCDR

M
L-

ba
se

d 
gl

au
co

m
a 

lia
bi

lit
y

C

A B

D

0

20

40

60

0

20

40

60

80

100

Recom
bination

r ate (cM
/M

b)

HERC2

28.4 28.6

Position on chr15 (Mb)
-lo

g 10
( P

)

OCA2

28 28.2

rs12913832

0.2

0.4

0.6

0.8

R2
rs12913832

0.2

0.4

0.6

0.8

4

5

VCDR PRS Z-score bins

O
R

 (9
5%

 C
I)

47.0% 23.1% 17.1% 10.0% 2.2% 0.6%

0

1

2

3

100

O
R

 (9
5%

 C
I)

ML-based VCDR bins
< 0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 > 0.7

0

20

40

80

60

prevalence=1.8%
n=65,193

47.2% 23.1% 17.2% 9.7% 2.2% 0.6%

Fraction of samples
in the bin

prevalence=5.5%
n=98,151

< -0.1 -0.1–0.5 0.5–1.1 1.1–1.9 1.9–2.5 > 2.5

Figure 4. Relationship between glaucoma and VCDR
(A) Glaucoma odds ratios for each ML-based VCDR bin versus the bottom bin is shown. The fraction of individuals in each bin is shown
(n ¼ 65,193).
(B) Glaucoma odds ratios for different VCDR elastic net PRS bins versus the bottom bin for individuals with a glaucoma phenotype not
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(D) LocusZoom for the strongest associated variant (rs12913832, p¼ 2.23 10�66) in theML-based glaucoma liability GWAS conditioned
on the ML-based VCDR.
Glaucoma prediction in the EPIC-Norfolk cohort

To further assess the utility of the ML-based elastic net

VCDR PRS for prediction of glaucoma, we classified the sta-

tus of EPIC-Norfolk participants (n¼ 5,868) for POAG (175

cases and 5,693 controls). We additionally sub-categorized

POAG cases into HTG (98 cases) and NTG (77 cases). Given

the enrichment of the VCDR PRS for variants associated

with neuronal development and function, we hypothe-

sized that the PRS would be particularly associated with

NTG. We fit a logistic regression model to predict POAG

status by using age, sex, and ML-based elastic net VCDR

PRS as its three predictors.

The ML-based elastic net VCDR PRS was strikingly associ-

ated with POAG, and particularly NTG, in EPIC-Norfolk

(Figure 5). The ORs (95% CI) comparing the top risk decile

with the bottom decile were 9.7 (3.4–27.6) for POAG, 7.4

(2.2–25.2) for HTG, and 16.5 (2.2–125.9) for NTG (Figure 5).

The overall prediction metrics were AUC ¼ 0.74, 95% CI ¼
0.70–0.77, AUPRC ¼ 0.08, 95% CI ¼ 0.06–0.11, prevalence

¼ 3.0% for POAG; AUC ¼ 0.73, 95% CI ¼ 0.68–0.78,

AUPRC ¼ 0.05, 95% CI ¼ 0.03–0.08, prevalence ¼ 1.7%

for HTG; and AUC ¼ 0.76, 95% CI ¼ 0.71–0.80, AUPRC ¼
0.04, 95% CI ¼ 0.03–0.06, prevalence ¼ 1.3% for NTG.

The AUC and AUPRC show nominally significant improve-

ments over those from an analogous model using the Craig
The Americ
et al. elastic net VCDR PRS for POAG (DAUC ¼ 0.014, 95%

CI ¼ 0.0–0.03, p ¼ 0.03; DAUPRC ¼ 0.008, 95% CI ¼
0.0–0.02, p ¼ 0.03, paired bootstrap test) and HTG

(DAUC ¼ 0.014, 95% CI ¼ 0.0–0.03, p ¼ 0.04; DAUPRC ¼
0.006, 95% CI ¼ 0.0–0.02, p ¼ 0.04, paired bootstrap test).
Discussion

Large cohorts of genotyped and phenotyped individuals

have enabled researchers to identify genetic influences of

many traits. As methods to ascertain genetic variants in

large cohorts continue to improve, we anticipate the major

challenge for cohort generation to be accurate and deep

phenotyping59 at scale. Here, we demonstrated that ML-

based phenotyping shows promise for improving both

scalability to biobank-sized datasets and phenotyping ac-

curacy. We predicted VCDR from all 175,337 UKB fundus

images in less than 1 h on a distributed computing system.

Multiple lines of evidence indicate that the model-based

VCDR predictions improve accuracy over manual labeling,

including the reproduction of known VCDR-related

biology, identification of plausible novel genetic associa-

tions, and generation of polygenic risk scores that better

predict VCDR in multiple held-out datasets. Additional
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Figure 5. Primary open-angle glaucoma (POAG) prediction in the EPIC-Norfolk cohort
(A–C) Odds ratios and 95% CIs for POAG prevalence by decile of VCDR PRS; reference is decile 1. Results are from logistic regression
models adjusted for age and sex for primary open-angle glaucoma (175 cases, 5,693 controls) (A), high-tension glaucoma (HTG; 98 cases,
5,693 controls) (B), and normal-tension glaucoma (NTG; 77 cases, 5,693 controls) (C). Results are presented for the ML-based elastic net
VCDR PRS (blue) and the Craig et al.17 elastic net VCDR PRS (yellow). Note the y axis log scale.
advantages of ML-based phenotyping over manual label-

ing are improved joint prediction accuracy for multiple

correlated phenotypes and predicting liabilities instead of

binary labels for binary phenotypes. By regressing out pre-

dicted VCDR from the predicted referrable glaucoma risk

(i.e., whether the individual should seek further ophthal-

mologist care), we identified residual referrable risk not

attributable to variation in VCDR.

The improvement of our model-based VCDR GWAS over

the recent expert-labeled VCDR GWAS by Craig et al. is

consistent with improved phenotyping accuracy by our

model. The expert labels may include more noise or mea-

surement error than the ML-based labels, as suggested by

the inter-grader variability; the inter-grader Pearson’s cor-

relation between the two ophthalmologists as reported

by Craig et al. for images graded multiple times was 0.75

(95% CI ¼ 0.72–0.77), whereas the ML model achieves a

Pearson’s correlation of 0.89 between the model predic-

tions and adjudicated expert labels (95% CI ¼ 0.88–0.90).

Noise or variability in human grading of VCDR can arise

from difficulty in defining the cup-rim border of the optic

disc. If the cup-rim border is sloping, rather than having

vertical edges, defining it is challenging via two-dimen-

sional images. In this situation, the average VCDR of mul-

tiple graders may be considered more accurate than a sin-

gle grader’s score. Our ML-based model was trained and

tuned on images that were assessed by multiple graders

and may therefore be expected to outperform a single hu-

man grader, on average.

The 93 novel VCDR-associated loci discovered by ML-

based phenotyping substantially expand our knowledge

of the biological processes underlying optic nerve head

morphology. While elevated IOP is an established cause

of glaucoma,43 characterized by a pathologically enlarged

VCDR, our results support the role of IOP’s contributing

to variation in VCDR within the healthy range as well.

Of particular note were commonVCDR-associated variants

in genes harboring mutations that cause inherited anterior

segment dysgenesis that is well characterized phenotypi-

cally. Our findings suggest these dysgenesis processes
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may also occur at subclinical levels and contribute to vari-

ation in the complex VCDR phenotype. Understanding

the genotype-phenotype link in rare single-gene disorders

can therefore improve our knowledge of some of the many

contributory causes to complex traits. Our results also sup-

port an important role of neuronal development processes

for VCDR. It remains uncertain whether these processes

primarily influence VCDR during optic nerve development

in early life, thereby reflecting population variation in

baseline optic nerve head anatomy, or act later in life and

reflect a pathological, glaucomatous change in VCDR

over time. Interestingly, genes involved in developmental

processes more broadly, including development of the car-

diovascular and urogenital systems, were significantly en-

riched in our results (Table S8). This may suggest early

life processes are a major determinant of VCDR variation

in adult populations.

This study also showed that a substantial proportion of

VCDR variation can be predicted with a polygenic risk

score. Improving VCDR prediction produces a concomi-

tant improvement in glaucoma prediction, as we demon-

strated by stratifying glaucoma prevalence by using the

VCDR PRS. While the UK National Screening Committee

does not currently recommend population screening for

glaucoma because tests lack sufficient positive predictive

value,60 using polygenic prediction to identify subsets of

the general population that are at risk for glaucoma may

enable effective screening. Notably, we identified a sub-

stantially higher POAG prevalence in the top decile of

VCDR PRSs and it may be that current screening tests

would have sufficient positive predictive value if applied

to this enriched population subset. Earlier detection and

treatment of glaucoma, a disease that causes progressive

and irreversible vision loss, is a key strategy outlined by

the World Health Organization for the prevention of

blindness worldwide.61

While this study demonstrates the potential for ML-

based phenotyping to expand our understanding of the

genetic variation underlying complex traits, the method

has important limitations that must be taken into
1, 2021



account. Application of this technique relies on the

trained model’s producing accurate predictions in the

genomic discovery set. Here, we showed strong generaliz-

ability of the model trained on non-UKB fundus images to

the UKB fundus images used for genomic discovery by

manually labeling a small subset of UKB fundus images

and validating model predictions against these ground

truth labels. Application to other phenotypes derived

from fundus images, or other data modalities such as op-

tical coherence tomography or magnetic resonance imag-

ing, would require similar demonstrations of model

generalizability. Additionally, the initial model training

can be costly and time intensive, as it requires manual la-

beling to be performed. While our ablation analysis

showed that training on only 10% of the data still identi-

fied the majority of VCDR-associated loci, model perfor-

mance did not appear to saturate even at the full training

set size. Ongoing improvements to transfer learning may

reduce future labeled data requirements,62 although the

ability to extrapolate consumer imaging improvements

to biomedical imaging is unclear.63

Another limitation of our study was the absence of data

for absolute vertical disc diameter (VDD), a commonly

used proxy for disc size. While VDD is a heritable trait64

that would be of interest given its correlation with

VCDR, considerable challenges preclude extending ML-

based phenotyping to VDD in our study. Because VDD is

an absolute size measurement, it requires strict standardi-

zation of image acquisition. In particular, differences in ab-

solute size measurements from images arise secondary to

camera-related magnification and from ocular refraction,

mostly determined by the length of the eye.65 Since our

training images were derived from multiple centers and

multiple different cameras that were not standardized in

terms of magnification and zoom, it is not possible to

derive an accurate VDD on which to train an algorithm.

Even within UKB, accurately measuring VDD from fundus

images is not possible because there are no measurements

of axial length. Correcting for magnificationwith spherical

equivalent only corrects for about 30% of eye size-related

magnification artifact, whereas axial length correction

can account for nearly 100% of the variation.65 Conse-

quently, we cannot exclude the possibility that some loci

discovered in this study would not reach genome-wide sig-

nificance in a GWAS adjusted for VDD. However, the

similar effect sizes estimated for loci significant both in

our study and in Craig et al., and the increased number

of loci discovered in an independent ML-based GWAS of

VDD-adjusted VCDR in the UKB,66 suggest that many of

the loci discovered here influence VCDR independently

of VDD.

In summary, we have proposed a method for perform-

ing genomic discovery on biobank-scale datasets by us-

ing machine learning algorithms for accurate phenotyp-

ing. A key benefit of the method is its ability to use a

modest-sized biomedical dataset annotated with reason-

able accuracy to train a model that identifies the under-
The Americ
lying patterns and yields usable predictions. Extending

the method to additional phenotypes and data modal-

ities in large-scale biobanks could further expand our un-

derstanding of disease etiology and improve genetic risk

modeling.
Data and code availability

Code and detailed instructions for model training, prediction, and

analysis, as well as instructions for evaluating the trainedmodel on

fundus images, are available at https://github.com/Google-Health/

genomics-research/tree/main/ml-based-vcdr. The UKB data are

available for approved projects through the UK Biobank Access
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deposited the derived data fields and model predictions following

UKBpolicy, whichwill be available through theUKBiobankAccess

Management System. Independent associated loci and polygenic

risk score coefficients are available as supplemental tables (supple-

mental information). Full GWAS summary statistics are publicly

available through the above GitHub link.
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chowski, R., Khawaja, A.P., Nag, A., Wang, Y.X., Wang, J.J.,

Cuellar-Partida, G., et al.; NEIGHBORHOOD Consortium

(2017). New insights into the genetics of primary open-angle

glaucoma based on meta-analyses of intraocular pressure and

optic disc characteristics. Hum. Mol. Genet. 26, 438–453.

21. Czudowska, M.A., Ramdas, W.D., Wolfs, R.C.W., Hofman, A.,

De Jong, P.T.V.M., Vingerling, J.R., and Jansonius, N.M.

(2010). Incidence of glaucomatous visual field loss: a ten-

year follow-up from the Rotterdam Study. Ophthalmology

117, 1705–1712.

22. Age-Related Eye Disease Study Research Group (1999). The

Age-Related Eye Disease Study (AREDS): design implications.

AREDS report no. 1. Control. Clin. Trials 20, 573–600.

23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z.

(2016). Rethinking the Inception Architecture for Computer

Vision. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.

2016.308.

24. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.

(2009). ImageNet: A large-scale hierarchical image database. In

2009 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). https://doi.org/10.1109/CVPR.2009.5206848.

25. Shorten, C., and Khoshgoftaar, T.M. (2019). A survey on Im-

age Data Augmentation for Deep Learning. J. Big Data 6, 60.

26. Prechelt, L. (1998). Early Stopping - But When? In Neural Net-

works: Tricks of the Trade, G.B. Orr and K.-R. Müller, eds. (Ber-

lin, Heidelberg: Springer Berlin Heidelberg), pp. 55–69.

27. Loh, P.-R., Tucker, G., Bulik-Sullivan, B.K., Vilhjálmsson, B.J.,
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