
Automated Detection of Glaucoma With 

Interpretable Machine Learning Using Clinical 
Data and Multimodal Retinal Images 

PARMITA MEHTA, CHRISTINE A. PETERSEN, JOANNE C. WEN, MICHAEL R. BANITT, PHILIP P. CHEN, 
KARINE D. BOJIKIAN, CATHERINE EGAN, SU-IN LEE, MAGDALENA BALAZINSKA, AARON Y. LEE 

∗, AND 

ARIEL ROKEM 

∗, ON BEHALF OF THE UK BIOBANK EYE AND VISION CONSORTIUM 

• PURPOSE: To develop a multimodal model to automate 
glaucoma detection 

• DESIGN: Development of a machine-learning glaucoma 
detection model 
• METHODS: We selected a study cohort from the UK 

Biobank data set with 1193 eyes of 863 healthy subjects 
and 1283 eyes of 771 subjects with glaucoma. We trained 

a multimodal model that combines multiple deep neural 
nets, trained on macular optical coherence tomography 

volumes and color fundus photographs, with demographic 
and clinical data. We performed an interpretability analy- 
sis to identify features the model relied on to detect glau- 
coma. We determined the importance of different features 
in detecting glaucoma using interpretable machine learn- 
ing methods. We also evaluated the model on subjects 
who did not have a diagnosis of glaucoma on the day of 
imaging but were later diagnosed (progress-to-glaucoma 
[PTG]). 
• RESULTS: Results show that a multimodal model that 
combines imaging with demographic and clinical features 
is highly accurate (area under the curve 0.97). Interpreta- 
tion of this model highlights biological features known to 

be related to the disease, such as age, intraocular pressure, 
and optic disc morphology. Our model also points to pre- 
viously unknown or disputed features, such as pulmonary 

function and retinal outer layers. Accurate prediction in 

PTG highlights variables that change with progression to 

glaucoma—age and pulmonary function. 
• CONCLUSIONS: The accuracy of our model suggests 
distinct sources of information in each imaging modal- 
ity and in the different clinical and demographic vari- 
ables. Interpretable machine learning methods elucidate 
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subject-level prediction and help uncover the factors that 
lead to accurate predictions, pointing to potential disease 
mechanisms or variables related to the disease. (Am J 
Ophthalmol 2021;231: 154–169. © 2021 Elsevier Inc. 
All rights reserved.) 
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laucoma is the leading cause of irreversible
blindness worldwide, affecting approximately 76
million people in 2020 and predicted to affect

early 111.8 million by 2040. 1 Several challenges exist that
revent timely and accurate diagnosis of glaucoma. First,
onsiderable expertise is required to perform the appropri-
te clinical examination and to interpret several special-
zed tests, such as visual field testing and retina and optic
erve imaging. The demand for this expertise is outpacing
he supply of experts available to interpret tests and make
iagnoses. 2 Second, glaucoma is often asymptomatic until
he advanced stages of the disease. In the United States,
pproximately 50% of the estimated 3 million people with
laucoma are undiagnosed, and in other parts of the world,
stimates are as high as 90%. 3-7 New diagnostic tools that
mprove the diagnostic efficiency of the existing clinical
orkforce are therefore vital for enabling earlier detection
f the disease to facilitate early intervention. 8 , 9 

Although glaucoma is asymptomatic in its early stages,
tructural changes in the macula and retinal nerve fiber
ayer (RNFL) precede the onset of clinically detectable vi-
ion loss. 10 Many studies have therefore attempted to au-
omatically diagnose glaucoma using retinal imaging data.

ost of these studies used either color fundus photographs
CFPs) or features extracted from CFPs. 11-20 Other stud-
es 21 , 22 used features extracted from retinal B-scans ob-
ained via optical coherence tomography (OCT), a 3-
imensional volumetric medical imaging technique used to
mage the retina. 

Macular OCT images are used to extract features such
s thickness of the RNFL, ganglion cell–inner plexi-
orm layer, or full macular thickness. Models evaluating
hanges in thickness of various retinal layers are promis-
ng because such changes, a direct result of tissue loss,
re highly accurate disease predictors. However, thickness
aps are derived automatically and, despite advances in
TS RESERVED.. 0002-9394/$36.00 
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OCT hardware and software, errors in segmenting retinal
OCT images remain relatively common, with error esti-
mates between 19.9% and 46.3%. 23-25 A study compar-
ing a model built on raw macular OCT images with one
built on thickness maps demonstrated that the former was
significantly more accurate than the latter in detecting
glaucoma. 26 

In this work, we built a new, multimodal, feature-agnostic
model that includes clinical data, CFPs and macular OCT
B-scans. Data for our model came from the UK Biobank, a
multiyear, large-scale effort to gather medical information
and data, with the goal of characterizing the environmen-
tal and genetic factors that influence health and disease. 27 

Approximately 65 000 UK Biobank participants underwent
ophthalmologic imaging procedures, which provided both
macular OCT and CFP data that we matched with clinical
diagnoses and with many other demographic, systemic, and
ocular variables. 

Specifically, cardiovascular and pulmonary variables
were chosen as markers of overall health. We used raw
macular OCT and CFP data and did not rely on features
extracted from these images. The use of machine learn-
ing, and particularly deep learning (DL), methods to ana-
lyze biomedical data has come under increased scrutiny be-
cause these methods can be difficult to interpret and inter-
rogate 28 , 29 ; therefore, we applied machine learning inter-
pretability methods to demystify and explain specific data
features that led to accurate model performance. 30 Finally,
we validated our model by comparing it to expert clinicians’
interpretation of CFPs to provide an additional benchmark
for the performance of our machine learning model relative
to current clinical practice. 

METHODS 

• DATA ACCESS: We conducted an analysis of cross-
sectional data from the UK Biobank. Data were obtained
through the UK Biobank health research program. Dei-
dentified CFPs, OCT scans, and health data were down-
loaded from the UK Biobank repository, and our study,
which did not involve human subjects research, was exempt
from institutional review board approval. The UK Biobank
study was approved by an institutional review board under
11/NW/0382. 

The UK Biobank’s research ethics committee ap-
proval means that researchers wishing to use the re-
source do not need separate ethics approval, unless
recontact with participants is required (irrelevant in
our case). Analysis of deidentified human data is not
considered human subjects research by the University
of Washington Institutional Review Board and does
not require additional approval and an exemption was
determined. 
e  

VOL. 231 AUTOMATED DETECT
DATA SET AND COHORT SELECTION: The UK Biobank
s an ongoing prospective study of human health, for which
ata have been collected from more than half a million in-
ividuals. 31 Participants throughout the United Kingdom
ere recruited between 2006 and 2010 and were aged 40-
9 years at the time of recruitment. The data set contains
nformation from questionnaires, multimodal imaging mea-
urements, and a wide range of genotypic and phenotypic
ssessments. Data collection is ongoing, allowing for longi-
udinal assessments. 

We analyzed a subset of the UK Biobank participants
ased on a snapshot of the repository that was created in the
all of 2017. This subset consisted of data from 96 020 sub-
ects, 65 000 of whom had retinal imaging data. This data
et consisted of between 1 and 3 visits for each of the sub-
ects. CFP data were available for only the first visit for these
ubjects. Retinal OCT data were available for the first and
econd visits. The participants were given questionnaires
o report various eye conditions, to which they could re-
ort healthy or choose 1 or more of the following eye con-
itions: glaucoma, cataract, macular degeneration, diabetic
etinopathy, and injury for each eye. We used the answers
rovided to the questionnaire as the labels for each eye. We
id not examine the images to determine or alter the labels
ssociated with the retinal image and clinical data. 

ohort selection 

e selected a cohort from these data for the following 3
lasses: (1) subjects who in their first study visit report that
hey have been diagnosed with glaucoma and consistently
eport a glaucoma diagnosis in follow-up visits (glaucoma);
2) subjects who in their first study visit report that they
ad no ocular conditions and consistently reported no ocu-

ar condition in follow-up visits (healthy); (3) subjects who
n their first visit report no ocular conditions, but in a subse-
uent visit report having received a diagnosis of glaucoma,
abeled as the "progress to glaucoma" (PTG) group. 

Ocular measurements were only available for the first 2
isits. The ocular data includes retinal imaging (both CFPs
nd macular OCTs) as well as intraocular pressure (IOP),
orneal hysteresis, and corneal resistance factor. However,
 subset of the PTG group (n = 21 eyes) received a glau-
oma diagnosis between the first and second visit, and we
sed this subset to conduct statistical analysis of IOP. Sys-
emic and pulmonary variables were available for the entire
TG group both pre- and post-diagnosis, and we were able
o analyze the impact of diagnosis on these variables for the
ntire PTG group. 

xclusion criteria 
e excluded all subjects who preferred not to answer ques-

ions about their ocular conditions or did not know how
o answer these questions. For glaucoma subjects, we ex-
luded any subjects who listed any ocular conditions in
ddition to glaucoma, such as age-related macular degen-
ration, diabetic retinopathy, cataract, or injury. For the
ION OF GLAUCOMA 155 
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healthy subjects, we excluded any subjects whose visual acu-
ity was recorded as worse than 20/30 vision in either eye.
We also excluded any healthy subjects with any secondary
health conditions (determined by the primary diagnosis
codes record in their hospital inpatient records). Finally, we
excluded any retinal OCT scans from all 3 classes that could
not be aligned using motion translation (X and/or Y shift).

Supplementary Figure S1 shows a flow chart of sub-
ject/image inclusion and distribution among subject groups.
Supplementary Figure S2 shows a sample of excluded reti-
nal OCT images. The final numbers for the 3 groups were
as follows: glaucoma, subjects = 863, eyes = 1193; healthy,
subjects = 771, eyes = 1283; and PTG, subjects = 55,
eyes = 98. Supplementary Figure S3 shows the age and gen-
der distribution of subjects in each of these groups. CFP im-
ages were available for only 56 of the 98 eyes in the PTG
group (retinal OCT images were available for all PTG sub-
jects). 

Test set 
The data were separated by subject such that both eyes and
all visits of any subject belonged to the test, train, or valida-
tion set. At the outset, we randomly selected 100 eyes, 50
healthy and 50 with glaucoma. These were set aside as the
test set on which we evaluated each of the models. An addi-
tional 170 eyes were assigned as a validation set for parame-
ter tuning and model selection. The data were separated by
subject such that both eyes of any subject belonged to the
test, train, or validation set. 

The test set was also rated by 5 glaucoma experts. Glau-
coma experts used the CFPs for providing their scores.
Glaucoma experts marked 13 CFPs from the test set as be-
ing of such poor quality as to preclude any assessment. All
comparisons of clinician and model performance excludes
these 13 eyes. Supplementary Figure S4 shows a sample of
excluded CFPs. 

• EVALUATING EXPERT PERFORMANCE: Five glaucoma
fellowship-trained ophthalmologists were recruited for the
study to evaluate CFP images from the test set to provide an
expert diagnosis. The glaucoma experts identified the eye in
each CFP as either healthy or glaucoma and rated the con-
fidence in the diagnosis from 1 to 5. A higher number in-
dicated higher confidence in their diagnosis. This resulted
in a 10-point scale for the diagnosis. We used this 10-point
scale to create receiver operating characteristic curves for
each expert. 

• MACHINE LEARNING MODELS AND TRAINING PROTO-

COLS: We built separate DL models for each imaging
modality (retinal OCT and CFP). 

Retinal OCT model 
The DL model built on the retinal OCT data took a sin-
gle retinal OCT image as input and output a probability
that the input image was from a subject with glaucoma. This
156 AMERICAN JOURNAL OF OPHTH
odel required individual B-scans. Each retinal OCT con-
isted of 128 B-scan images. This model was not provided
ny other additional information. This DL model was based
n the Densenet architecture, 32 with 4 blocks of 6, 12, 48,
nd 32 layers each. We initialized model weights for this
odel with MSRA initialization. 33 Each retinal OCT B-

can is a grayscale 512 × 650-pixel image. We flipped each
ight eye image left to right; we did this so that the op-
ic nerve was on the same side for each scan. Additionally,
e cropped each scan to an aspect ratio of 1:1 and down-

ampled to 224 × 224 pixels. 
Down-sampling is needed to enable use of limited GPU
emory when fitting DL models and is common practice in

pplications of DL to OCT data. 34 , 35 We used a per-pixel
ross-entropy as the loss function with 0.1 label smooth-
ng regularization. 36 We used Tensorflow 

37 with Adam op-
imizer 38 and an initial learning rate of 0.001 and epsilon of
.1. We trained for 60 epochs (batch size 80) on 1 graphical
rocessing unit (GPU). The hyperparameters for the train-
ng protocol were chosen by tuning on the validation data
et. To improve the generalization ability of our model, we
ugmented the data by applying affine, elastic and intensity
ransformation over the input images. 

FP model 
he DL model on the CFP took a single CFP image as in-
ut and output a probability that the input image was from
 subject with glaucoma. This model was built with trans-
er learning. 39 , 40 We chose transfer learning as (1) we had
28 × fewer CFP images, and (2) CFP are color images and
ransfer learning has been shown to be effective for detect-
ng other pathology in fundus images. 41 We used the Incep-
ionResnetV4 

42 model, pretrained on ImageNet data. 43 We
sed the Adam optimizer with an initial learning rate of 1e-
. We trained the model for 20 epochs, with a batch size of
00. 

During training, we kept the weights in two-thirds of the
etwork (750 layers) frozen. We preprocessed each fundus

mage by flipping the left CFP image so that the optic nerve
as on the same side of each image. We also subtracted local
verage color to reduce differences in lighting and cropped
he images to contain the area around the optical nerve
Supplementary Figure S5). We augmented the CFP by ap-
lying affine, elastic, and intensity transformations similar
o the retinal OCT images. 

aseline models 
odern gradient-boosted decision trees often provide state-

f-the-art performance on tabular-style data sets where fea-
ures are individually meaningful, as consistently demon-
trated by open data science competitions. 44 We used
radient-boosted decision trees, implemented in XG-
oost, 45 to build 4 baseline models (BM1, BM2, BM3,
nd BM4) based on the following demographic features:
ge, gender, ethnicity; systemic features: body mass index
BMI), forced vital capacity (FVC), peak expiratory flow
ALMOLOGY NOVEMBER 2021 
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(PEF), heart rate, diastolic and systolic blood pressure, pres-
ence of diabetes, recent caffeine and nicotine intake; and
ocular features: IOP, corneal hysteresis, and corneal resis-
tance factor. We used IOPcc (corneal compensated IOP)
in this study as it is thought to be less influenced by corneal
measurements such as central corneal thickness, corneal
hysteresis, and corneal resistance factor than other mea-
sures of IOP such as Goldmann applanation tonometry. 46 , 47 

We chose these factors a priori based on existing litera-
ture. The systemic features were chosen as markers of over-
all health. Our data set did not include data on direct smok-
ing status. As there is evidence of smoking and pollution
being linked with glaucoma, 48 we added pulmonary capac-
ity variables: FVC and PEF in addition to other systemic
variables. We used the following hyperparameters for train-
ing: learning rate of 0 . 001, early stopping; L1 regularization
of 1 . 0, no L2 regularization, no column sampling during
training, and bagging subsampling of 70%. Hyperparame-
ters were chosen by tuning on the validation data set. 

Ensemble model 
We combined clinical data with results from image-based
models to build the final model. To combine data from im-
age models, we used the probability of glaucoma as esti-
mated by the respective image model as the feature value
for each image. We combined these (128 OCT slices and
one fundus) to a 129-element vector as the results of the
image-based models. This vector was then combined with
all the features from BM3 for the final feature set. 

We used gradient-boosted decision trees to build this final
model. The hyperparameters were chosen by tuning on the
validation set and were as follows: learning rate 0 . 001, early
stopping, bagging sub-sampling of 70%, L2 regularization of
1 . 0, no L1 regularization, and no column sampling during
training. As an additional control for potential overfitting,
we performed a shuffle test 49 where we repeated the training
with randomly permuted labels (see Supplement Section:
Shuffle Test Results). 

Interpretability methods 
For pixel-level importance in the image-based DL models,
we used integrated gradients 50 and SmoothGrad 

51 to deter-
mine salient pixels for the input images. For the tree-based
models built using XGBoost, we used Tree explainer 52 to
calculate the SHAP values. The SHAP values were used to
determine feature importance and feature interaction. 

• STATISTICAL ANALYSIS: We used bootstrapping 53 to de-
termine confidence intervals for area under the receiver
operating characteristic curve (AUC) and accuracy dis-
played in Figures 2 and 5 . We performed analysis of variance
(ANOVA) to analyze the differences in pulmonary func-
tion features (FVC and PEF) among the 3 groups: healthy,
glaucoma, and PTG. We used the Dunn test 54 with Bonfer-
roni correction for pairwise comparison to determine differ-
ences between the 3 groups. 
VOL. 231 AUTOMATED DETECT
RESULTS 

e built multiple models using clinical data to establish a
aseline. Glaucoma is related to many biological features,
he most important of which is age. 55 Thus, we built our
rst baseline model (BM1) on basic demographic character-
stics of the patient and control populations. BM1 included
ge, gender, and ethnicity. Using these features, a boosted-
radient tree-based model predicted an occurrence of glau-
oma well above chance (AUC: 0.81, 95% confidence in-
erval [CI]: 0.71-0.90). 

In addition, we created 3 other models: The systemic
ata model (BM2) added cardiovascular and pulmonary
ariables—including BMI, FVC, PEF, heart rate, diastolic
nd systolic blood pressure, and the presence of diabetes—
o the demographic variables from BM1. These variables
ere chosen a priori based on small cohort studies that

ound relationships between glaucoma and BMI 56-58 and
ge, 59 smoking, and cardiovascular factors. 48 We also in-
luded transient factors, such as recent caffeine and nico-
ine intake, to account for any transient impact on blood
ressure and heart rate. 
BM2 was more accurate than BM1 in detecting glaucoma

0.88 AUC, 95% CI 0.79-0.96). In the third model (BM3),
e added ocular data to BM1, including IOP, corneal hys-

eresis, and corneal resistance factor. We did not include
isual acuity in BM3, as this factor was used in delineating
ur study groups: which individuals are patients and which
re healthy controls, excluding as controls individuals with
ow visual acuity. BM3 performed similarly to BM2 (0.87
UC, 95% CI: 0.8-0.94). In the fourth model (BM4), we

dded systemic and ocular data to BM1. BM4 was more ac-
urate than all 3 of the other baseline models, with a test
et AUC of 0.92 (95% CI: 0.87-0.96; Figure 1 , A and D). 

We used SHapley Additive exPlanations (SHAP) 60 to
nalyze the features that provide high predictive power in
M4. SHAP allocates optimal credit with local explana-

ions using the classic Shapley values derived from game
heory 61 and provides a quantitative estimate of the con-
ribution of different features to the predictive power of a
odel. A higher absolute SHAP value indicates greater fea-

ure impact on the model prediction and greater feature im-
ortance. The 5 features with the highest mean absolute
HAP values for BM4 were age, IOP, BMI, FVC, and PEF.
upplementary Figures S6 and S7 show the most important

eatures in BM4, as evaluated through SHAP, and the in-
eraction effect among the top features. 

We built a separate DL model on each retinal image
odality. Glaucoma is characterized by structural changes

n the optic disc and other parts of the retina. Visual ex-
mination of CFP and macular OCT images is therefore an
mportant tool in current diagnostic practice. 62 Because our
ata set included both CFP and OCT images, we built sep-
rate DL models for each image modality (see Methods).
ION OF GLAUCOMA 157 



FIGURE 1. Results of glaucoma detection models. Receiver operating characteristic (ROC) curves are shown for (A) baseline 
models built with systemic and ocular data, (B) retinal imaging and final models, and (C) glaucoma expert ratings based on inter- 
pretation of CFPs. The corresponding area under the ROC curves (AUC) with ( ± 95% confidence interval) for models (D, E) 
and for clinician scores (F). The gray dashed line and shaded area denote the AUC and 95% CI for a base model (BM1) built on 

demographics (age, gender, and ethnicity). 
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The DL model built on CFP classified eyes diagnosed with
glaucoma with modest accuracy (AUC: 0.74, 95% CI: 0.64-
0.84; Figure 1 , B and E). The DL model built on macular
OCT images was more accurate than all the baseline mod-
els and the model trained on CFP images (AUC: 0.95, 95%
CI: 0.90-1.0). 

When we combined information from both the DL mod-
els trained on CFP and OCT via an ensemble, the resulting
model was marginally more accurate than the DL model
built on macular OCT images alone (AUC: 0.963, 95%
CI: 0.91-1.0). There are several studies that demonstrated
the complementary nature of macular data and optic nerve-
head data. Given the macular OCT does not contain the
optic disc, it seems unlikely that CFPs do not provide addi-
tional information. 

We used several methods to interpret the DL mod-
els. DL models are notoriously inscrutable. However, sev-
eral methods for interrogating these models have recently
emerged. 50 , 63-66 To assess the features that lead to high per-
formance of the image-based models, we first assessed which
scan of the macular OCT provided the most information.
We fit individual models to each scan of the macular OCT.
Recall that macular OCTs are volumetric images; in the UK
Biobank data set, each macular OCT consists of 128 scans.
We found that models using scans from the inferior and su-
perior macula were more accurate than those using the cen-
tral portion of the macula ( Figure 2 , A). 
158 AMERICAN JOURNAL OF OPHTH
Second, we built an ensemble model that used the results
f the DL models of the individual macular OCT scans to
redict glaucoma occurrence per retina. This model used
ach of the 128 macular OCT scans to make a prediction
bout the retina. Figure 2 , B, shows the feature importance
ttributed to each scan via SHAP; it shows that scans from
he inferior retina were deemed more important by this
odel. 
Large patient and control populations are heterogeneous,

nd we do not generally expect that information will con-
istently come from one particular part of the retina. Never-
heless, when considering the SHAP values of each macular
CT scan, we found that the data set broke into 2 major

lusters based on the SHAP values from different retinal
arts ( Figure 2 , C). One cluster mostly contained retinas
rom healthy subjects and used scans from the inferior part
f the retina as negative predictors of glaucoma. The second
luster mostly contained glaucomatous retinas, and SHAP
alues of these same scans from the inferior and superior
acula were used as positive predictors of glaucoma. This

lso explains why models fit only to scans from the inferior
r the superior macula were more accurate. 

In addition to the scan-by-scan analysis, image-based
odels can be evaluated pixel by pixel to determine the

mportance of specific image features to the DL models’ de-
ision making. Using integrated gradients, 50 we generated
aliency maps of the pixels responsible for DL model pre-
ALMOLOGY NOVEMBER 2021 



FIGURE 2. Interpretation of the ensemble model built on macular OCT images. A. AUC for single image per retina models. B. Mean absolute SHAP values per retinal image 
for predicting glaucoma occurrence per retina. C. Heat map of SHAP value per retinal image for predicting glaucoma occurrence per retina. The images are ordered from top to 
bottom and from superior to inferior retina. The dashed line indicates the central retinal image from the OCT volume. OCT = optical coherence tomography. 
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FIGURE 3. Saliency maps for macular OCT and CFP. Columns left to right: macular OCT image overlaid with saliency map, 
cropped CFP input to the neural network, CFP saliency map. Each macular OCT image is laid out with its temporal side to the left. 
A. Retina of a subject with glaucoma diagnosis. B. Retina of healthy subject. The green outline on the OCT saliency map indicates 
the areas the model deems most important. The darker pixels on the CFP saliency map indicate the areas the model deems most 
important. CFP = color fundus photograph, OCT = optical coherence tomography. 
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diction. Figure 3 shows a macular OCT scan for an eye with
glaucoma and a scan for a control eye along with the CFP
images and CFP saliency maps for each eye. 

The CFP saliency maps typically highlight the optic
nerve head in both normal and glaucomatous retinas. The
saliency maps for OCT image typically highlight the nasal
side of the RNFL and outer retinal layers. 

We built the final model by combining both modalities
of retinal imaging and demographic, systemic, and ocular
features. This model was an ensemble, which combined in-
formation from raw macular OCT B-scans and CFP images
as well as all demographic, systemic, and ocular data used
in BM4. This final model had an AUC of 0.967 (95% CI:
0.93-1.0). Figure 4 shows the 10 features with the highest
mean absolute SHAP value over all observations in the data
set. 

The most important features for this final model, as deter-
mined by their SHAP values, include age, IOP, and FVC, in
addition to the CFP and macular OCT scans from both in-
ferior and superior macula. BMI is less significant than FVC
in this final model. Furthermore, IOP had a higher impor-
tance than age. This is a reversal in importance of features
when compared to models built without information from
160 AMERICAN JOURNAL OF OPHTH
etinal imaging. Unsurprisingly, this confirms that the CFP
nd OCT scans contain information that supersedes in im-
ortance the information provided by BMI and age. 

We compared the performance of our model with ratings
rom glaucoma experts to provide a comparison to current
linical practice. To compare the performance of our final
odel to expert clinicians, 5 glaucoma experts evaluated
FPs of the test set. Initially, experts were also given ac-

ess to OCT images for each subject. However, raw B-scans
rom macular OCTs are not an image modality that experts
sually examine during regular clinical practice for glau-
oma diagnosis. Because we did not have access to thick-
ess maps, experts made the diagnoses using only the CFP
ata ( Figure 1 , C and D). The highest AUC for the ex-
ert rating was 0.84, and the lowest was 0.79. The av-
rage pairwise kappa for the 5 experts was 0.75, indicat-
ng a good level of agreement between experts about the
iagnosis. 

We validated our model by evaluating it on patients who
rogress to glaucoma. The UK Biobank data set contained
everal subjects who lacked a glaucoma diagnosis on their
rst study visit but received a diagnosis before a subsequent
isit. These PTG subjects provide a unique opportunity to
ALMOLOGY NOVEMBER 2021 



FIGURE 4. Interpretation of the final model built on image, demographic, systemic, and ocular data. Interpretation for models built on medical and optometric features is based 
on SHAP values. A. The 10 most important features from this model. SHAP values vs feature values for (B) age, (C) IOP, (D) FVC, and (D) BMI. Each point denotes a subject, 
and the color denotes whether the subject has been diagnosed with glaucoma. BMI = body mass index, FVC = forced vital capacity, IOP = intraocular pressure. 
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FIGURE 5. Evaluation of various models on the "progress-to-glaucoma" (PTG) cohort. A. Accuracy of the models on the PTG 

cohort. The gray dashed line and shaded area denote the area under the receiver operating characteristic curve (AUC) and 95% CI 
for a base model built on demographics alone (age, gender, and ethnicity; BM1). The bottom row shows the distribution of (B) age, 
(C) BMI, (D) FVC, and (E) IOP for healthy, PTG, PTG after glaucoma diagnosis, and glaucoma. ∗∗∗P < .0001. BMI = body mass 
index, FVC = forced vital capacity, IOP = intraocular pressure. 
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evaluate our model, which was built on data from glauco-
matous and healthy subjects. 

Detection of glaucoma in the PTG cohort was tested
using all our models ( Figure 5 , A). Both BM1 (based
on age, gender, and ethnicity) and BM2 (added systemic
variables) were indistinguishable from chance performance
(BM1: 51% correct, 95% CI: 36%-64%; BM2: 47% cor-
rect, 95% CI: 33%-60%). BM4, which included ocular vari-
ables, achieved substantially higher accuracy at 75% cor-
rect (95% CI: 67%-83%). The model trained on macular
OCT images achieved slightly lower accuracy at 65% cor-
rect (95% CI: 55%-74.5%), and the model trained on com-
bined CFP and OCT achieved an accuracy of 69% (95%
CI: 60.2%-78.6%). The final model trained on OCT, CFP,
and all other available features achieved an accuracy of 75%
correct (95% CI: 65%-83%). 

This evaluation may provide additional insight into the
biological features of the disease. For many of these features,
including age and BMI, the PTG group lies between the
normal and glaucoma groups ( Figure 5 , B through E). We
identified 2 interesting deviations from this pattern. First,
for the pulmonary capacity variables (FVC and PEF), the
PTG group was indistinguishable from the healthy subjects
in our sample, and both healthy and PTG subjects signifi-
cantly differed from patients with glaucoma. This difference
is statistically significant even when controlling for age (see
Supplementary Results). However, on a subsequent visit, af-
ter receiving a glaucoma diagnosis, the pulmonary capacity
 l  

162 AMERICAN JOURNAL OF OPHTH
easurements of this group was indistinguishable from that
f the glaucoma group. 

Second, the PTG group had a significantly higher IOP
han the group diagnosed with glaucoma ( Figure 5 D; see
upplementary Results). The post-diagnosis IOP measure-
ents of the PTG group shows similar trend with lower IOP

alues. 
Finally, as the labels we used were based on self-report,

e performed several analyses to ascertain the reliability of
laucoma labels (Supplementary Results). 

DISCUSSION 

utomating glaucoma detection using imaging and clini-
al data may be an important and cost-effective strategy for
roviding population-level screening. In this study, we used
achine learning to construct an interpretable machine

earning model that combined clinical information with
ultimodal retinal imaging to detect glaucoma. We created

nd compared several models based on clinical data to es-
ablish a baseline: BM1 used demographic data (age, gender,
thnicity), BM2 added systemic medical data (cardiovascu-
ar, pulmonary), and BM4 added ocular data (IOP, corneal
ysteresis, corneal resistance factor). Our final model was
n ensemble, which combined information from raw macu-
ar OCT B-scans and CFP images as well as all demographic,
ALMOLOGY NOVEMBER 2021 
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systemic, and ocular data used in BM4. This final model had
an AUC of 0.97. 

In interpreting this final model, we found that CFP,
age, IOP, macular OCT images from the inferior and su-
perior macula, and FVC were the most important features
( Figure 4 ). The significance placed on age and IOP by our
final model reiterate previously known risk factors for glau-
coma. The positive SHAP values for IOP in our model
rapidly increased above an IOP of approximately 20. This is
consistent with the fact that ocular hypertension, defined as
IOP greater than 21, is a key risk factor for the disease, and
furthermore clinicians may be more likely to diagnose glau-
coma in individuals who have an IOP greater than 21. 67-71 

Age and IOP switched places in their relative importance
in our final model, which includes retinal imaging, in ad-
dition to BM4 features. This suggests that retinal imaging
includes information that supersedes or is redundant with
information linked to age. This finding is consistent with
previous research, which demonstrated the ability of CFP to
predict cardiovascular risk factors including age. 72 Several
population-based studies have already demonstrated an in-
crease in the prevalence of glaucoma with age and have also
identified differences in the prevalence of glaucoma among
individuals of varying ethnicities. 73-75 

In their study of polygenic risk scores for intraocular pres-
sure using data from the UK Biobank data set, Gao and as-
sociates 76 calculated an AUC for the diagnosis of primary
open angle glaucoma of 0.713 for a model including only
age and sex. The addition of ethnicity in our model may
explain why our AUC for BM1 was slightly higher at 0.81.
We also observe 2 discontinuities in the age vs SHAP val-
ues for age ( Figure 4 , B), at ages 57 and 65 years. At both
ages, the SHAP values for age increase at a higher rate than
before. This could be due to both biological and socioeco-
nomic factors (e.g., 65 is the age of retirement in the United
Kingdom). 

However, it is difficult to make strong inferences about
the relationship between age, diagnosis, and retinal imaging
data, because these may be related in complicated manners.
The fact that these individuals self-report that they have
glaucoma is also mediated by clinical decision making of
the clinicians who assessed these individuals and told them
they had glaucoma, itself possibly affected by age. For more
on issues with self-reported labels, see below. 

The relationship between BMI and glaucoma is con-
troversial, with studies citing evidence for no correla-
tion, 57 positive correlation, 77 and negative correlation 

78 

between the two. Consistent with the most comprehensive
of these studies, the meta-analysis conducted by Liu and
associates, 77 BM4 demonstrated a positive correlation be-
tween glaucoma and increased BMI (Supplementary Figure
S6). The correlation between BMI and glaucoma might also
be due to ascertainment bias, as subjects with high BMI are
more likely to seek medical care (for non-glaucoma-related
health issues) leading to higher diagnosis of glaucoma in
this population. 
VOL. 231 AUTOMATED DETECT
An important novel finding of our study was the correla-
ion of pulmonary measures, especially decreased FVC, with
laucoma. There are several possible explanations for this
nding. First, a recent study by Chua and associates found a
orrelation between glaucoma and atmospheric particulate
atter. 79 Chua and associates’ study did not include pul-
onary function tests such as FVC and was correlational

n nature, but other studies have linked exposure to partic-
late matter with decreased FVC, 80-82 suggesting common
auses for reduced FVC and for glaucoma. 

Second, it may be that the treatment of glaucoma with
opical beta blocker therapy has an impact on reducing
VC. 83 This idea receives further support from the findings
n the PTG group, who do not have a diagnosis and have
resumably not received any treatment. These individuals
ave FVC that is higher than the glaucoma group and is

ndistinguishable from the healthy group before a diagnosis
s made. After a diagnosis is made, their FVC also decreases
o levels indistinguishable from that of the glaucoma group.
hus, lower FVC values could indicate a result of glaucoma

reatment. 
Examination of the pixel-by-pixel importance of both

etinal image modalities provided additional insight into
hat our model focused on when predicting glaucoma
 Figure 3 ). For the CFPs, the model focused on the optic
isc, a known source of information in the clinical diagno-
is of glaucoma. 84 For the macular OCT B-scans, the model
elied on previously validated retinal areas, including the
nferior and superior macula. 85 

In addition, the algorithm points to the nasal macular
NFL. The effect of glaucoma on RNFL integrity is well
nderstood, and RNFL thickness maps are often used clin-
cally to diagnose glaucoma. However, the automated al-
orithms that are used clinically have a high segmentation
rror rate, resulting in variable thickness estimates, which
ay in turn lead to errors in diagnosis. 23 By avoiding re-

iance on extracted features such as thickness maps, our ap-
roach enabled the discovery of other possible biological
eatures of glaucoma. For example, consistent with recent
esults in the same data set, 86 the model also identified other
non-RNFL) parts of the inner retina as important (e.g., see
igure 3 , B). 

In addition to the RNFL and inner retina, the model
elied on the outer layers of the retina for glaucoma di-
gnosis. The involvement of the retinal outer layers in
laucoma is controversial. In a typical analysis of OCT
mages that focuses on the thickness of different parts of
he retinal layers, glaucoma effects are usually not found
n outer layers, 87-89 but an association between age, IOP,
nd retinal pigment epithelial thickness is sometimes de-
ected. 90 Some anatomic studies do not find any differences
n the outer retinal layer between healthy and glaucoma-
ous eyes. 91 Other studies, using psychophysical methods in
uman subjects with glaucoma, 92 , 93 using histologic meth-
ds in human eyes, 94 , 95 have shown the involvement of the
etinal outer layer in glaucoma. 
ION OF GLAUCOMA 163 
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In addition, Choi and associates 96 used high-resolution
imaging techniques (ultrahigh-resolution Fourier-domain 

OCT and adaptive optics) to image glaucomatous reti-
nas. They found a loss of retinal cone receptor cells that
correspond to visual field loss. This loss of cones could
cause subtle changes in the appearance of this part of
the retina that are not reflected in changes in thickness
but are still captured by the DL model (e.g., changes in
texture). 

Ha and associates found that the retinal photoreceptor
ellipsoid zone intensity in spectral domain OCT was de-
creased in glaucomatous eyes, and this decrease correlated
with the stage of glaucoma. They were able to create an au-
tomated model that could quantify the changes in ellipsoid
zone intensity. This was not an agnostic model, but it sug-
gests that there is a quantifiable change in the outer retina
in glaucoma that a DL model may be able to identify. 97 , 98 

On the other hand, the changes to outer retina that are used
by the DL model could also be an artifact related to thin-
ning of the inner retina without a specific biological basis
in the outer retina. 

The ability of DL models to use visual cues that are not
apparent to the human eye has been previously demon-
strated in another study in which retinal angiograms were
generated from OCT images. 99 This finding is also consis-
tent with a recent study that used unsegmented OCT scans
and reported the involvement of outer retinal layers in a
DL model that detects glaucoma. 26 , 100 Nevertheless, this
result could also be a consequence of more prosaic effects
of DL sensitivity: one possibility is that the DL model is re-
lying on the outer retina OCT signal, because changes to
more superficial layers such as the RNFL lead to signal hy-
perintensity or increased speckle scatter in the deeper lay-
ers. Another possibility is that the outer retinal layers are
being used as an anatomic reference point for the model to
use overall retinal thickness. 

Our final model detected the occurrence of glaucoma
with an accuracy of 75% on a cohort that had not yet been
clinically diagnosed at the time of their testing (PTG). This
does not constitute early detection: even though the in-
dividuals were not clinically diagnosed, they may already
have significant disease progression, because many patients
are undiagnosed even in relatively late stages of the dis-
ease. 10 The median IOP value was higher for the PTG co-
hort than for the subjects diagnosed with glaucoma, possibly
because treatments for glaucoma are designed to decrease
IOP. 

The PTG group also tended to be younger than those
diagnosed with glaucoma. Interestingly, FVC in the PTG
group was higher than in the glaucoma group and was in-
distinguishable from healthy subjects. This finding helps ex-
plain why BM2, which relied heavily on PVC and PEF, per-
formed relatively poorly on the PTG cohort, achieving an
AUC of 47% ( Figure 5 , A). It also provides possible evi-
r  

t  
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ence against a causal relationship between FVC and glau-
oma, as mentioned above. 

Furthermore, in a postdiagnosis visit, pulmonary factors
FVC and PEF) in these individuals were lower and indis-
inguishable from that of the patients with glaucoma, fur-
her supporting a possible treatment effect. This area war-
ants further investigation. The results obtained with this
ohort are somewhat limited. This is because the size of this
ohort is rather small—only 55 participants. Owing to this
imited sample size, this group was only used as a further
alidation and not used to fit any of the models. 

Before our model can be considered for use in a real-
orld setting, several limitations should be considered and
ddressed. A major limitation of our study was the veracity
f ground truth labels used to train the model. Labels used
ere based on self-report, which may be problematic. 101 In
articular, there is a concern that labels may include signif-
cant proportions of false negatives (i.e., people who have
laucoma but do not report so; glaucoma is generally under-
eported 

7 ) and false positives (i.e., people who do not have
laucoma but report that they do, for example, because they
onfuse different eye disorders). Self-reported labels were
articularly pernicious for assessment of PTG individuals,
s this designation relied on several self-reported labels for
ach individual. 

To further explore these concerns, we examine several
actors (Supplementary Results). A previous study that
sed self-report as labels for models of glaucoma with this
ata set 79 confirmed that the distributional characteristics
f the UK Biobank participants who self-reported glau-
oma matched the demographic distribution of those from
ther population studies such as the Blue Mountain Eye
tudy, 102 the Rotterdam Eye Study, 103 and the Baltimore
ye Study. 104 

In general, it would have been better to use the gold stan-
ard International Classification of Diseases, Ninth and Tenth
evisions ( ICD-9 and ICD-10 ), available for UK Biobank
articipants who underwent inpatient procedures. How-
ver, this poses significant challenges too: the proportion of
articipants who met this criterion is too low for machine
earning approaches that take advantage of retinal imag-
ng data. Additionally, this population would be biased be-
ause they warranted inpatient clinical care and therefore
ould potentially represent a subset of glaucoma that has

ncreased severity of the disease, compared with other indi-
iduals with glaucoma. 

Nevertheless, the presence of these labels provides an ad-
itional opportunity to evaluate the veracity of self-report.
hen a gold standard ICD-10 diagnostic code of glaucoma

s available, it is always consistent with self-report, sug-
esting a low prevalence of false negatives in this group.
n addition, concerns about self-report labels are mitigated
y the high test-retest reliability of self-report: only 0.3%
f individuals with repeat visits provide inconsistent self-
eport. Furthermore, all but one individual who reported
hat they were prescribed medication that is used for treat-
ALMOLOGY NOVEMBER 2021 
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ment of glaucoma self-reported that they have glaucoma,
which suggests a low prevalence of false negatives in this
group. 

Still, although we eliminated any subject who had in-
consistent answers or declined to answer, the generally high
rate of undiagnosed glaucoma and the potential for recol-
lection error means that some participants may have been
incorrectly labeled. Considering the effects of such misla-
beling, we note that a high prevalence of false positives (i.e.,
a substantial portion of glaucoma suspects or ocular hyper-
tensive participants mistakenly reporting having glaucoma)
would weaken the associations and effects that we are re-
porting, because they would systematically bias the effects
towards the null hypothesis. 

Although we agree that this may affect our classification
model, we believe that the systemic risk factors that we have
found as a positive effect may be an underestimate of the
true effects. Nevertheless, the issue of self-reported labels
cannot be fully overcome with these data, and these results
would have to be confirmed in a data set in which ground-
truth labels are available. 

Another limitation of the present study is that we in-
cluded only subjects without other ocular disorders. In the
general population, glaucoma may coexist with other ocu-
lar comorbidities, and it is unclear what effect this may have
on the model’s ability to detect glaucoma accurately. This
also limits the translation of this model to real-world use.
Nevertheless, selecting subjects with only a glaucoma di-
agnosis and no other ocular morbidities instills confidence
that the model we built is glaucoma-specific: it delineates
the boundaries between these groups, and identifies the fea-
tures specific to glaucoma. 

Furthermore, there is some evidence that the UK
Biobank has a slight healthy volunteer bias, 105 potentially
VOL. 231 AUTOMATED DETECT
iasing inferences to the general population from a model
ased only on these data. In our results, this bias would prob-
bly also induce a bias to the null. Nevertheless, taken to-
ether, these factors suggest that a model such as the one
roposed here would need to be optimized with more data
nd data that is more representative of the general popu-
ation and patient populations before it could be used in
ractice. 

Finally, features of the optic disc are clinically impor-
ant in diagnosing glaucoma. The limited quantity and poor
uality of the CFPs in the UK Biobank data set likely con-
ributed to the low AUC of both the CFP DL model and
he expert clinician grading. In addition, clinicians did not
ave access to any additional information about the indi-
iduals, and it is very likely that clinicians informally use
emographic information, such as patient age, and self-
eported daily activities as additional information when
aking diagnostic determination. 
This means that in other data, or in clinical settings

here CFPs have very high quality, and additional infor-
ation is synthesized into clinical decision making, these

ata may improve the input of models that use CFPs. Fur-
hermore, as demonstrated in our combined model, synthe-
izing multiple sources of information helps us draw clinical
nsights into the pathogenesis of the disease. 

Our study combined information from multiple
ources—including 2 different retinal imaging modali-
ies (CFP and OCT), demographic data, and systemic
nd ocular measurement—to build a model that detects
laucoma. This approach yielded not only very accurate
etection, but it also enabled us to isolate and interpret
ritical variables that helped us draw clinical insights into
he pathogenesis of the disease. 
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