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Abstract

The eye is the window through which light is transmitted and visual sensory signalling origi-

nates. It is also a window through which elements of the cardiovascular and nervous sys-

tems can be directly inspected, using ophthalmoscopy or retinal imaging. Measurements of

ocular parameters may therefore offer important information on the physiology and homeo-

stasis of these two important systems. Here we report the results of a genetic characterisa-

tion of retinal vasculature. Four genome-wide association studies performed on different

aspects of retinal vasculometry phenotypes, such as arteriolar and venular tortuosity and

width, found significant similarities between retinal vascular characteristics and cardiometa-

bolic health. Our analyses identified 119 different regions of association with traits of retinal

vasculature, including 89 loci associated arteriolar tortuosity, the strongest of which was

rs35131825 (p = 2.00×10−108), 2 loci with arteriolar width (rs12969347, p = 3.30×10−09 and

rs5442, p = 1.9E-15), 17 other loci associated with venular tortuosity and 11 novel associa-

tions with venular width. Our causal inference analyses also found that factors linked to arte-

riolar tortuosity cause elevated diastolic blood pressure and not vice versa.

Author summary

Vessels at the back of the eye (the “retina”) can be imaged easily. This paper reports on the

largest genetic study of retinal vessel shape and size characteristics so far undertaken, to

the best of our knowledge. Our study is novel in using an automated artificial intelligence

imaging approach to distinguish between arteries and veins, and in demonstrating more

genetic associations with vessel characteristics than any previous study (119 genetic loci in

all). We also show that the tortuosity of retinal arteries is the most strongly genetically
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determined vessel characteristic (replicated remarkable well in a separate second large

dataset). In addition, using a particular type of genetic analysis (so called “Mendelian Ran-

domization”) we show for the first time that the tortuosity of arteries in the retina is caus-

ally related to elevated diastolic blood pressure and not the other way around. This is

important as it provides unique insights into the mechanism of elevated blood

pressure and hypertension, providing pointers to novel therapeutic targets for future

treatment.

Introduction

The retina is one of the most metabolically active tissues of the human body [1] whose physio-

logical functions require a steady supply of oxygen and nutrients and prompt removal of meta-

bolic waste products. The retina is supplied by branches of the ophthalmic artery, which

originates from the internal carotid artery that splits into a central and several ciliary arteries,

which penetrate the globe to supply the inner and outer portions of the retina. Retinal vessel

calibre, tortuosity and other morphological features vary as a result of constitutive, heritable

factors [2], including genes participating in angiogenesis [3, 4], but also as a function of the

level of metabolic activity in the retina [5, 6], and systemic haemodynamic changes like blood

pressure [7, 8] and blood viscosity [9].

Retinal vessel morphology is an important marker of cardiometabolic [10–12] and eye

health [13, 14]. Previously published works have investigated the influence of genetic factors

over retinal vessel calibre and tortuosity [3, 4], but, as for many other complex traits, the heri-

tability explained by the identified genes is modest, the underlying mechanisms underlying

retinal vessel morphological variations remain poorly characterized, and the specific systemic

impairments that each single feature of retinal vasculature reflects, are still poorly understood.

Genome-wide association analyses provide a tool to discover unsuspected common variants

having potential risk for complex diseases [15]. There were previously reported genome-wide

association studies (GWAS) results on retinal vasculometry characteristics, including venular

width (not arteriolar width) [3] and more recently arteriolar and venular tortuosity [4], but

sample sizes were small, the number of loci limited (4 at best) [3], and findings from discovery

data-sets were not fully replicated [3].

A recent paper has examined the GWAS of retinal vessel density and complexity in a large

study of European participants from the UK Biobank identified several loci, but did not distin-

guish between arterioles and venules, which may have different genetic determinants [16].

Hence, we aim to improve our knowledge of the genetic basis of retinal vasculometry pheno-

types in the UK Biobank cohort, for arterioles and venules separately, and the mechanisms

that determine their shape and tortuosity, to better understand relationships between the ocu-

lar fundus vascular phenotype and systemic conditions.

Methods

Ethics statement

UK Biobank was conducted with approval from the North-West Multi-Centre Research Ethics

Committee (11/NW/0382), in accordance with the principles of the Declaration of Helsinki

and the Research Governance Framework for Health and Social Care. All participants gave

written informed consent.
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from http://www.1000genomes.org/), PLINK
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(http://www.gtexportal.org/home/), RegulomeDB
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mrbase.org/).

Funding: The retinal vasculometry work was

supported by the Medical Research Council

Population and Systems Medicine Board (MR/

L02005X/1) and British Heart Foundation (PG/15/

101/31889) (PJF,SAB,PHW,ARR,CGO,DPS). PJF

has received additional support from the Richard

Desmond Charitable Trust (via Fight for Sight) and

the Department for Health through the award made

by the National Institute for Health Research to

Moorfields Eye Hospital and the UCL Institute of

Ophthalmology for a Biomedical Research Centre.

The views expressed in this article are those of the

authors and not necessarily those of the

Department for Health. APK is funded by a UK

Research and Innovation Future Leaders

Fellowship (MR/T040912/1) and an Alcon Young

Investigator Award. XJ is funded by Moorfields Eye

Charity. OAM is funded by the Wellcome Trust

(206619/Z/17/Z). EPIC-Norfolk funding: The EPIC-

Norfolk study (DOI 10.22025/2019.10.105.00004)

has received funding from the Medical Research

Council (MR/N003284/1 and MC-UU_12015/1)

and Cancer Research UK (C864/A14136). The

clinic for EPIC-Norfolk 3HC was funded by

Research into Aging, now known as Age UK (Grant

Ref: 262). The genetics work in the EPIC-Norfolk

study was funded by the Medical Research Council

(MC_PC_13048). We are grateful to all the

participants who have been part of the project and

to the many members of the study teams at the

University of Cambridge who have enabled this

research. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: We have read the journal’s

policy and the authors of this manuscript have the

following competing interests: APK has consulted

for the following companies: Abbvie, Aerie, Google

Health, Novartis, Reichert, Santen and Thea. CJH

has consulted for Nevakar Inc.

https://doi.org/10.1371/journal.pgen.1010583
http://www.1000genomes.org/
https://www.cog-genomics.org/plink2/
http://www.gtexportal.org/home/
http://www.regulomedb.org/
http://www.ukbiobank.ac.uk
http://www.ukbiobank.ac.uk
https://app.mrbase.org/
https://app.mrbase.org/
https://doi.org/10.22025/2019.10.105.00004


Participants

The UK Biobank is a large multi-site cohort study of UK residents ages 40 to 69 years who

were registered with the National Health Service (NHS) and living up to 25 miles from a study

centre. A baseline questionnaire, measurements, and biological samples were undertaken in 22

assessment centres across the UK between 2006 and 2010. All UK Biobank genotypes were

obtained as described elsewhere [17].

Phenotyping and retinal imaging

Ophthalmic assessment was not part of the original baseline assessment and was introduced as

an enhancement in 2009 for 6 assessment centres which were spread across the UK (Liverpool

and Sheffield in North England, Birmingham in the Midlands, Swansea in Wales, and Croy-

don and Hounslow in Greater London). Participants completed a touch-screen self-adminis-

tered questionnaire. Retinal vessel information was extracted from digital fundus photography

and spectral domain OCT images. An automated system (the QUARTZ system) can distin-

guish anatomical features from retinal images, including the optic disc, venules, arterioles and

vessel segments, and out-puts centreline coordinates, and measures vessel width and tortuosity

[18–20]. QUARTZ measures were summarized using mean width in microns and tortuosity

(arbitrary units) [21] weighted by the length of the vessel segment, for arterioles and venules

separately for each image, averaged across both eyes to give a person-level mean for analyses.

Such an approach was considered appropriate given the pervasive examination of systemic

traits.

Image processing modules were all validated on a subset of 4,692 retinal images from a ran-

dom sample of 2346 UK Biobank participants: modules included vessel segmentation, image

quality score, optic disc detection, vessel width measurement, tortuosity measurement, arterio-

lar venular recognition [18–20]. The performance of the Arteriole/Venule (A/V) recognition

had detection rates of up to 96% for arterioles and 98% for venules when the automated proba-

bility of arteriole or venule was set to a cut-off of 0.8. An automated assessment of image qual-

ity was also made based on the segmented vasculature [18]. The algorithm achieved a

sensitivity of 95% and a specificity of 94% for the detection of inadequate images. A model eye

was used to quantify the magnification characteristics of the Topcon 3D OCT-1000 Mk 2 fun-

dus camera, allowing pixel dimensions of vessel diameter to be converted to real size [22].

Statistical analyses

GWAS. Details about the UK Biobank study including microarray genotyping and SNP impu-

tation have been described previously [17]. The UK Biobank team performed imputation from

a combined panel consisting of the Haplotype Reference Consortium [23] and UK10K refer-

ence panels. Phasing on the autosomes was carried out using a modified version of the SHA-

PEIT2 [24] program.

Ethnicity-stratified GWAS were performed on each of the different retinal vessel pheno-

typic traits. For this study, we included 52,798 research individuals of European ancestry par-

ticipating in the UK Biobank. For comparative purposes, additional sets of 933 individuals of

South Asian and 1,288 of African ancestry were available and analysed separately (Fig 1).

These analyses were underpowered and were used for comparison purposes only, and not for

any post-GWAS analyses. Mixed linear regressions, with the retinal vasculometry phenotypes

as the dependent variable, the allelic dosage at each locus as the independent predictors,

adjusted for age, sex, spherical equivalent and the first ten principal components were con-

ducted using the Bolt-LMM software [25] in the European ancestry subgroup. PLINK [26] was

used, after the removal of related subjects, for the analyses of non-European samples. The
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GWAS significance threshold was set at the customary 5×10−08. Although we conducted four

separate GWAS, in part because of the correlation between traits, we did not correct for multi-

ple testing.

Associations are reported for “genomic regions”, which we defined as contiguous regions

of markers associated at GWAS-level statistical significance separated by less than 1 million

base-pairs from each-other. The Online Mendelian Inheritance In Man dataset (www.omim.

org) was used to obtain information about diseases caused by rare mutation in any of the

genes near our association peaks.

Replication GWAS—EPIC-Norfolk

The European Prospective Investigation into Cancer (EPIC) study is a pan-European prospec-

tive cohort study designed to investigate the aetiology of major chronic diseases [27]. EPIC-

Norfolk, one of the UK arms of EPIC, recruited and examined 25,639 participants between

1993 and 1997 for the baseline examination [28]. The EPIC-Norfolk study was carried out fol-

lowing the principles of the Declaration of Helsinki and the Research Governance Framework

for Health and Social Care. The study was approved by the Norfolk Local Research Ethics

Committee (05/Q0101/191) and East Norfolk and Waveney NHS Research Governance Com-

mittee (2005EC07L). Recruitment was via general practices in the city of Norwich and the sur-

rounding small towns and rural areas, and methods have been described in detail previously

[29]. Since virtually all residents in the UK are registered with a general practitioner through

Fig 1. Particpant flow diagram.

https://doi.org/10.1371/journal.pgen.1010583.g001
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the National Health Service, general practice lists serve as population registers. All participants

gave written, informed consent. Ophthalmic assessment formed part of the third health exami-

nation and this has been termed the EPIC-Norfolk Eye Study [30]. In total, 8,623 participants

were seen for the Eye Study between 2004 and 2011. Although de-anonymising UK Biobank

participants or linking them with external datasets is not allowed, we expect no overlap

between discovery and replication datasets, because the EPIC-Norfolk study participants were

recruited in an area geographically distinct from where the UK Biobank participants were

recruited. Digital photographs of the optic disc and macula were taken using a TRC-NW6S

non-mydriatic retinal camera and IMAGEnet Telemedicine System (Topcon Corporation,

Tokyo, Japan) with a 10-megapixel Nikon D80 camera (Nikon Corporation, Tokyo, Japan).

Pupils were not dilated. All participants gave written, informed consent.

Genotyping was carried out using the Affymetrix UK Biobank Axiom Array (the same

array as used in UK Biobank). SNP exclusion criteria included: call rate< 95%, abnormal clus-

ter pattern on visual inspection, plate batch effect evident by significant variation in minor

allele frequency, and/or Hardy-Weinberg equilibrium P< 10–7. Sample exclusion criteria

included: DishQC < 0.82 (poor fluorescence signal contrast), sex discordance, sample call

rate< 97%, heterozygosity outliers (calculated separately for SNPs with minor allele frequency

>1% and<1%), rare allele count outlier, and impossible identity-by-descent values. We

removed individuals with relatedness corresponding to third-degree relatives or closer across

all genotyped participants. 99.7% of EPIC-Norfolk are of European descent and we excluded

non-White participants. Imputation was carried out using the Sanger imputation service

(https://imputation.sanger.ac.uk) with reference to the Haplotype Reference Consortium

panel, version 1.

Linkage Disequilibrium (LD) score regression analyses

Bivariate regression intercepts were calculated to distinguish between polygenetic effects and

effects of population stratification within and between GWAS. Inter-trait genetic correlation

on the summary statistics from GWASs was performed using LD Hub [31] and the LD score

regression program for phenotypes that were not available through the hub [32]. All the

parameters used for the LDSC analyses were following the authors’ recommendations [31] for

both the analyses using the LD Hub GWAS information and our own.

Tissue enrichment across multiple tissues

Multi-tissue expression enrichment analyses were performed in order to identify the expres-

sion levels in particular tissues using LD-score regression (LDSC) based procedures described

elsewhere [33]. The GWAS results were compared to gene expression data assembled and

made available by the authors of the LDSC program (https://storage.googleapis.com/broad-

alkesgroup-public/LDSCORE/LDSC_SEG_ldscores/Multi_tissue_gene_expr_1000Gv3_

ldscores.tgz).

Transcriptome-based association analyses

We applied whole-genome transcriptomic prediction models trained with reference data from

version 8 of the Genotype-Tissue Expression (GTEx) project [34] to infer transcriptome varia-

tion in the GWAS study and then compute transcriptome-to-trait associations using GWAS

associations’ summary statistics as input. We used the S-PrediXcan programme [35, 36] to

estimate genetically regulated gene expression using whole-genome tissue-dependent predic-

tion models, trained on GTEx version 8 reference transcriptome data and using GWAS-gener-

ated information to infer gene-based associations with retinal vasculature phenotypes. Based
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on the GTEx analysis described above, we applied this framework to 49 GTEx tissues and 4 ret-

inal vasculometry traits.

Integration of genotypic and expression data

Summary-based Mendelian Randomization (SMR) integrates summary-level GWAS data with

expression quantitative trait loci (eQTL) studies, to identify pleiotropic associations between a

complex trait and a specific gene [37].

Due to availability constraints and the need to minimise the number of tests, the eQTL-

based analyses were performed in selected tissues only. We selected tissues where the original

sample size in the GTEx datasets was comparatively large. To maximise power, we conducted

these analyses in subcutaneous adipose (N = 581), tibial artery (N = 584, chosen a priori in

preference to coronary artery due to increased sample size), and a less specific dataset of less-

tissue specific leukocytes for which larger sample sizes (N = 5,311) were available [38]. Tests

based on cis-methylation information (cis-mQTL), were carried out in brain tissues [39].

Mendelian Randomisation (MR)

The MR-base package [40] was used for two sample MR analyses testing for causality of vascu-

lar changes over metabolic traits. MR-base uses instruments SNPs selected on the basis of sev-

eral hundreds of GWAS summary data sets in its repository and estimates the causal impact of

specific traits (exposures) on retinal vasculature phenotype outcomes. These SNPs are all sig-

nificantly associated with the “exposure” trait and they are meant to be in linkage equilibrium

with each other, even if they are located in relative proximity of each other. In all cases, our

MR cases were two-sample; the genetic effects were obtained from our GWAS on the four reti-

nal vasculometry traits of interest, and they were compared with effect estimates on other traits

from samples that did not include any UK Biobank subjects. Studies in which the UK Biobank

had contributed information were specifically removed from the analyses reported here. We

are reporting results from different MR tests: the inverse variance weighted, weighted median

and MR-Egger tests (both MR and intercept). The results are primarily reported with the refer-

ence of the random-effect inverse variance weighted test, but the other tests may be valuable to

interpret the relationship between exposure and outcome. In particular, the MR-Egger inter-

cept tests for unbalanced (unidirectional) horizontal pleiotropy, which is usually taken as evi-

dence against causation.

Results

Association results

We performed four separate GWAS of arteriolar tortuosity (AT), arteriolar width (AW), venu-

lar tortuosity (VT) and venular width (VW) in a total of 52,798 participants of European

ancestry from the UK Biobank. The GWAS results were all in line with polygenic architecture

for all these traits, without any sign of inflation due to uncontrolled population structure

(LDSC intercept in the range 1.01–1.04, Table A in S1 Table). The four retinal vasculature

traits examined were genetically correlated with each-other, with the highest correlation (rg =

0.44) observed between VW and AW (Table B in S1 Table), suggesting that these parameters

estimate complementary aspects of the retinal vasculature.

The trait for which SNPs explained the largest proportion of variance (SNP heritability) was

AT (h2
SNP = 0.51). We also observed some of the most significant associations between this

trait and polymorphic variants across the genome. A total of 14,021 SNPs were associated at

genome-wide level with AT, and they clustered around 89 different unique genomic regions
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(Table C and Fig A i-iv in S1 Text). The most statistically significant association was observed

for polymorphic variants within the genomic sequence of the COL4A2 gene (p = 2.0x10-108 for

rs35131825). Other novel significant associations with this trait were observed for polymor-

phisms overlapping with the genomic sequences of genes involved in cardiovascular function,

such as those within the PDE3A gene (p = 1.30x10-64 for rs11045245). The statistically stron-

gest association for VW was found in the region located on chromosome 6q24 (p = 1.40x10-14

for rs12206319), within the NMBR gene. The strongest association for AW was identified with

a SNP (rs5442, p = 1.9x10-15) within GNB3 gene [41]. The strongest significant association for

VT was found for a SNP (rs1136956, p = 6.0x10-58) within the protein coding region of the

ACTN4 gene. Interestingly, this region was also significantly associated with all retinal vasculo-

metry phenotypic traits that we analysed, except for AW.

In addition to the genetic loci above, which have been previously related to vascular mor-

phology features, we observed unique associations that have not been previously associated

with vascular, or any other phenotypic trait. For example, strong association with AT was

found for rs1950127 (p = 1.80×10−68), located within the coding sequence of LOC101928978, a

transcript of unknown function. Novel association with AW was found for one gene locus

(CLUL1, p = 3.30×10−09 for rs12969347). In addition, a novel association with VT was found,

among others, at a locus overlapping with the genomic sequence of the DLX6 gene

(p = 4.30 × 10−23 for rs2948244), a transcriptor gene linked to forebrain and craniofacial

development.

Replication and transethnic comparison

We sought to replicate these findings in a fully independent population sample. For this

purpose, we used results obtained from the EPIC-Norfolk study, a population-based cohort

whose general ethnic and demographic characteristics as well as ophthalmic assessment

modalities closely matched those of the UK Biobank participants. Despite the considerably

smaller sample size replication was robust for all traits; for example, SNPs associated with

arterial tortuosity in the UK Biobank were associated at a Bonferroni (p < 0.05/73 available

SNPs) over 11 loci (Table D in S1 Table) and there was generally a linear relationship

between effect sizes estimated in the discovery and replication cohorts (Fig B in S1 Text).

We subsequently meta-analysed data from both cohorts and, as expected, we obtained asso-

ciations not previously seen in the analyses of the UK Biobank data only (Table E in S1 Table).

However, given that we were unable to provide further replication to these new results, in the

following sections of the manuscript, we will continue to refer to results obtained from the UK

Biobank only.

Next, we sought to investigate the variation in the amplitude of the association signals

across the different available ancestral groups (Table F in S1 Table), by comparing results from

the European panel with association data from 1,288 African and 933 South Asian UK Biobank

participants. Due to sample size differentials, p-value based comparisons were underpowered.

However, we observed considerable correlations between effect sizes observed in subjects of

European and African (Pearson’s r = 0.33, 95% CI [0.12, 0.51], p = 0.02]) and South Asian

ancestry (r = 0.46, 95% CI [0.27, 0.61], p<0.00001). Fig C in S1 Text shows the correlated rela-

tionship between different ancestry.

Tissue expression enrichment and exploration of functional mechanisms in

vasculometry regulation

Analyses of eQTL offer insights on the genetic architecture of expression regulation. These

analyses also help to annotate the exact genes among the many located within associated
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regions whose variations are at the origin of the association signals. Many of the GWAS associ-

ations were expressed across a wide range of tissues (Table G in S1 Table). Due to considerable

tissue variability of expression patterns, we first sought to identify the tissues where our

GWAS results observed in European participants were most enriched. A multi-tissue enrich-

ment analysis for traits [33] found that, among available GTEx tissues/cell types, genes associ-

ated with retinal vessel parameters in our four GWAS analyses showed statistically significant

enrichment in adipose tissues (Fig D in S1 Text), but also in artery, venous tissues, as well as

smooth muscle-rich tissues such as oesophagus and myometrium tissues. Genes associated

with VW diverged most from the pattern observed for the other vasculometry traits and were

mostly expressed in kidney and pancreas, although the results of these analyses were not statis-

tically significant after multiple testing correction.

We subsequently tested the hypotheses that many of our GWAS findings were exerting

their effects over the phenotypes through the eQTL effects affecting the transcription of the

genes. Using tissues in which we observed the highest enrichment of GWAS results (subcuta-

neous adipose and tibial artery) as well as white blood cells due to the abundance of informa-

tion available for them, we conducted summary-based Mendelian randomization tests for loci

associated with AT, which was the GWAS analysis for which we obtained most results and

therefore had most power (Fig E in S1 Text; Table A in S1 Table shows AT heritability value

0.512). For the other retinal vasculature traits, the SNP instruments were of low power due to

relatively few associations, meaning non-significant results in MR causality analyses. We

found statistically significant (pHEIDI� 0.05) evidence that many SNPs associated with AT

causally influences this phenotype through the control of the transcription process of several

genes, such as the SNPs in the ACTN4 locus (Table H in S1 Table), which was associated with

three out of the four retinal vessel phenotypes we analysed in our dataset.

Relationship of vasculometry and other phenotypes

To establish a relationship between the retinal vessel phenotypes that we analysed, with other

human phenotypic traits or disease, we calculated the genome-wide correlation between effect sizes

observed in our GWAS with those estimated for other diseases. These analyses suggest that our

phenotypes share significant proportions of their genetic risk with a number of cardiometabolic

traits and disease (Table I in S1 Table). Statistically significant genetic effects’ correlations were

observed, notably between retinal vessel parameters and metabolic phenotypes such as the systolic

and diastolic blood pressure, cardiovascular disease, fat mass, but also standing body height, etc.

We consider retinal vasculometry parameters as biomarkers of vascular changes elsewhere

in the body. We further explored causality by performing two-sample MR analyses of poten-

tially relevant traits that were significantly correlated with the retinal vasculometry phenotypes

that we analysed (Table J in S1 Table). For these purposes, we used data that were available

through the MR-base platform. We specifically tested the hypotheses that processes associated

with retinal vasculometry variability can lead to other diseases. We found statistically signifi-

cant evidence that processes underlying arteriolar tortuosity in the retina cause elevated dia-

stolic blood pressure (pIVW = 3.5 × 10−05, Fig 2). Our analyses also suggested that changes in

arteriolar tortuosity may also causally affect risk of coronary heart disease.

We also tested the reverse model that these phenotypes causally lead to changes in arterial

tortuosity, using the limited analyses on whose traits whose summary statistics are publicly

accessible (Table K in S1 Table). We did not find any evidence of reverse causation, which fur-

ther reinforces the confidence in the original MR findings that identified AT as one of the

causes for elevated diastolic blood pressure and a potential contributing cause to coronary

heart disease.
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Discussion

Based on the largest dataset of retinal vessel morphology to date, we identified 119 different

loci associated with retinal vasculometry traits. We found the most loci (n = 89) associated

with AT, and 2 novel loci associated with AW, 17 loci associated with VT, and 11 associations

with VW. Our study used AI-enabled automated image processing techniques to derive these

retinal vasculometry traits, which have been developed, validated internally and externally,

and applied in a harmonised fashion across two large population-based cohorts, namely UK

Biobank and EPIC-Norfolk cohorts [11, 12, 18, 20, 21]. Previous work using our AI-enabled

automated retinal vessel image analysis system (QUARTZ) has described phenotypic associa-

tions of these four vasculometry indices (i.e., AW, AT, VW, VT) with conventional

Fig 2. Results of Mendelian Randomization analyses for arteriolar tortuosity (AT) as a causal influence on

diastolic blood pressure (DBP). Footnotes: Among 108 SNPs that showed independent genome-wide significant

associations with AT in conditional regression analysis, 99 had published information available on their association

with DBP in non-UK-Biobank studies [reference: decipher "id:ieu-b-39" and remove from y-axis label]. Single points

in the graph represent co-ordinates determined by the effect of each specific SNP on DBP (in non-Biobank studies)

and AT (in UK Biobank). Outlying SNPs are identified individually by rs-number. [see comment below.]. MR analyses

were conducted with all 99 SNPs as instrumental variables using the conventional inverse-variance-weighted (IVW)

and Egger methods. The slope of each line corresponds to the estimated MR effect for each method. Significance tests

for the MR slope (Table I in S1 Table) were: p = 0.00004 (3.55E-05) by MR-IVW. p = 0.0050 (0.005017737) by

MR-Egger. Using a weighted-median MR method (which is less sensitive to outliers), the corresponding p-value was

p = 0.00001 (1.01E-05).

https://doi.org/10.1371/journal.pgen.1010583.g002
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cardiometabolic risk factors including blood pressure (BP) [11], adiposity/BMI [12], DM and

blood lipids [21]. Analysis in UK Biobank has demonstrated strong associations between VW

and VT with markers of adiposity [12], and that AW, VW and AT all show strong inverse asso-

ciations with blood pressure (systolic and diastolic) [11]. Hence, these microvascular charac-

teristics could be the cause or consequence of important pathophysiological traits. We sought

to clarify the direction of causality by examining their genetic determinants by instrumental

variable (Mendelian randomization, MR) analysis.

Several loci have been identified by earlier, statistically less-powered studies with smaller

sample sizes. A meta-analytic study of over 18,000 participants of European ancestry identified

rs2194025 locus on chromosome 5q14 near the MEF2C gene as being associated with retinal

arteriolar diameter [42], later updated to include over 24,000 multi-ethnic participants to find

4 loci associated with both central retinal vein and arterial width [41]. We were unable to repli-

cate these findings, with our most significant associations for AW being on chromosomes 18

and 22, with completely different loci (Table E in S1 Table). More recent studies have focussed

on examining genetic determinants of retinal vessel tortuosity. A study of just over 3000 indi-

viduals of European ancestry showed one locus associated with VT (ACTN4/CAPN12 genes),

and another associated with AT (COL4A2 gene) [4]. A recent study using the UK Biobank

data source in fewer participants, showed that retinal vessel density and fractal dimensions, as

a measure of vessel complexity (extracted from the entire image after deep learning vessel seg-

mentation without distinction between arterioles and venules) were associated with 7 and 13

novel loci respectively [16]. The fewer number of loci identified, suggesting a lower level of

heritability, may reflect the indiscriminate identification of vessels (without being able to dis-

tinguish between arterioles and venules), and while the strong signal between overall vessel

density with MEF2C was replicated by the association we observed specifically with venular

width, the level of overlap with our vasculometry phenotypes was limited to 8 loci (Table L in

S1 Table), and the strong signal with OCA2 was not observed.

In our study, the most statistically significant association with AT was observed for poly-

morphic variants within the genomic sequence of the COL4A2 gene (p = 2.0x10-108 for

rs35131825). Importantly, these associations were apparent in both the validation UK Biobank

dataset (also shown in a sub-set of non-European ancestry, see Tables D and E in S1 Table),

and the EPIC-Norfolk replication dataset with remarkable replication. The COL4A2 gene is

implicated in angiogenesis and tumour growth suppression [43] and previous work has

reported specific changes in its genomic sequence that cause familial and sporadic small vessel

disease [44, 45]. Interestingly, the COL4A2 gene is located next to the COL4A1 gene on chro-

mosome 13q34. COL4A1 is known to harbour mutations that cause familial retinal arteriolar

tortuosity [46]. It is therefore unclear if COL4A1, COL4A2 or both can contribute to changes

in the retinal vasculature. Other novel significant associations with this AT trait were observed

for polymorphisms overlapping with the genomic sequences of genes involved in cardiovascu-

lar function, such as those within the PDE3A gene (p = 1.30x10-64 for rs11045245), a gene pre-

viously associated with the size of the aortic root [47] and blood pressure [48], but to the best

of our knowledge, not with retinal or other small vessel morphological features.

Significant associations with loci that have been previously implicated in angiogenesis and

regulation of vasculature function was a feature of all four traits we examined. For example,

the statistically strongest association for VW was found in the region located on chromosome

6q24 (p = 1.40x10-14 for rs12206319), within the NMBR gene, which has previously been asso-

ciated with retinal vascular calibre [3]. The strongest association for AW was identified for a

SNP (rs5442, p = 1.9x10-15) within the GNB3, a gene also associated previously with central ret-

inal vein calibre [41], but also multiple ocular phenotypes such as refractive error [49], macular

thickness [50] and corneal astigmatism [51]. The strongest significant association for VT was

PLOS GENETICS GWAS on retinal vasculometry phenotypes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010583 February 9, 2023 10 / 16

https://doi.org/10.1371/journal.pgen.1010583


found for a SNP (rs1136956, p = 6.0x10-58) within the protein coding region of the ACTN4
gene. The ACTN4 gene codes for an alpha actinin protein, a ubiquitous and multifunctional

family involved in the cytoskeleton framework and cell-cell adhesion [52]. Interestingly, this

region was also significantly associated with all retinal vasculometry phenotypic traits that we

analysed, except for AW.

Another important novel question we sought to answer from this study was the relationship

between retinal vasculometry and systemic metabolic traits. This is particularly relevant for

BP, in examining whether microvascular changes (as evidenced in the retina in our study) pre-

cede or cause raised BP, or whether they result in hypertension. Genetic influences on AT

were strongest with high heritability (h2 value 0.5), and intermediate for VW and VT (with h2

values ~0.2), offering scope for the MR approach to be used for all these three traits. The low

heritability observed for AW deprived us of the opportunity to explore the systemic conse-

quences of factors linked to AW variation. These differences suggest that these vasculometry

traits might be differently genetically and phenotypically determined, with AT being by far the

most heritable of the 4 traits, exhibiting associations with 89 unique genomic regions. Using

Mendelian Randomization (MR), we provide strong statistical evidence (p = 3.5x10-5) that

processes leading to increased AT causally influence blood pressure.

To explore the direction of causality we took advantage of the availability of powerful

"instrumental variables" drawn from among genetic variants strongly predisposing to traits of

interest. However, the SNPs with the largest per-allele effects on AT had little or no effect on

diastolic BP (Fig 2), suggesting that there may be multiple biological pathways represented

among the 99 SNPs that were independently associated with AT and selected for our MR anal-

ysis, some not implicated in DBP. It should also be noted that although we find evidence to

support a causal influence of (genetically determined) AT on BP (particularly diastolic), AT is

not the most important trait observationally correlating with DBP (stronger phenotypic associ-

ations with DBP are observed for AW than for AT [11]). So, if the AT-DBP association is

causal, it is clearly not the whole story as far as microvasculature and systemic blood pressure

is concerned. It is noteworthy, that while a recent study concluded that polygenic risk scores

for hypertension and T2 diabetes might cause retinal vessel changes (specifically vessel density

and fractal dimensions), unlike our study there were too few specific genetic markers to con-

firm the direction of causality [16].

The major strengths of our study lie in the very large sample sizes, standardised and vali-

dated trait measures [11, 12, 18, 20, 21], comprehensive genomic data including imputations,

replication of GWAS results, and interpretation of our results both biologically (by use of

quantitative trait locus analyses) and epidemiologically (by use of MR approaches). Although

our primary analyses focused on European ancestry populations, we considered other ancestry

groups in sensitivity analyses. The main limitation we encountered was the lack of genetic

associations with AW and the modest number of loci associated with VW and VT, all traits

with a low SNP-based heritability, which limited the statistical power of MR analyses of these

venular traits. Also, while the use of person level averages in vasculometry phenotypes was

suitable to examine systemic traits, it was not possible to examine ocular outcomes that could

have led to between-eye vessel asymmetry (e.g., Central Retinal Vein Occlusion), and poten-

tially heritable conditions leading to ocular media opacity (such as corneal disease and cata-

ract), which may have impacted on retinal image quality. However, this affect is likely to be

modest given that only a portion of the vascular tree needed to be imaged (as opposed to the

whole image), resulting in high inclusion rates (~80% in both UK Biobank and EPIC-Norfolk

cohorts). Another potential issue is the need for adjustment for covariates, given that SNPs

associated with unadjusted covariates could generate spurious signals. However, this is of prac-

tical importance only when there are strong correlations with both the dependent and
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independent variables. Theoretically, covariate-adjustment may reduce the residual variance

of the outcome and thereby increases power to detect covariate-independent genetic associa-

tions. For this reason, we have run models for traits of interest with additional adjustment for

age (and age-squared to examine presence of non-linearity), diabetes mellitus and current

smoking status, which reassuringly appears to have little effect (Table M in S1 Table).

In conclusion, microvascular morphology, measured objectively and systematically in reti-

nal images, shows distinct phenotypic traits of arterial and venular width and tortuosity, each

with distinct patterns of genetic association. For arterial tortuosity, supportive evidence

emerges for microvascular morphology as a contributory cause, rather than a consequence, of

raised blood pressure, raising the possibility of novel treatment pathways.
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