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A foundation model for generalizable 
disease detection from retinal images

Yukun Zhou1,2,3 ✉, Mark A. Chia2,4, Siegfried K. Wagner2,4, Murat S. Ayhan1,2,4, 
Dominic J. Williamson1,2,4, Robbert R. Struyven1,2,4, Timing Liu2, Moucheng Xu1,3, 
Mateo G. Lozano2,5, Peter Woodward-Court1,2,6, Yuka Kihara7,8, UK Biobank Eye & Vision 
Consortium*, Andre Altmann1,3, Aaron Y. Lee7,8, Eric J. Topol9, Alastair K. Denniston10,11, 
Daniel C. Alexander1,12 & Pearse A. Keane2,4 ✉

Medical artificial intelligence (AI) offers great potential for recognizing signs of health 
conditions in retinal images and expediting the diagnosis of eye diseases and systemic 
disorders1. However, the development of AI models requires substantial annotation 
and models are usually task-specific with limited generalizability to different clinical 
applications2. Here, we present RETFound, a foundation model for retinal images that 
learns generalizable representations from unlabelled retinal images and provides a 
basis for label-efficient model adaptation in several applications. Specifically, RETFound 
is trained on 1.6 million unlabelled retinal images by means of self-supervised learning 
and then adapted to disease detection tasks with explicit labels. We show that adapted 
RETFound consistently outperforms several comparison models in the diagnosis and 
prognosis of sight-threatening eye diseases, as well as incident prediction of complex 
systemic disorders such as heart failure and myocardial infarction with fewer labelled 
data. RETFound provides a generalizable solution to improve model performance and 
alleviate the annotation workload of experts to enable broad clinical AI applications 
from retinal imaging.

Medical artificial intelligence (AI) has achieved significant progress in 
recent years with the notable evolution of deep learning techniques1,3,4. 
For instance, deep neural networks have matched or surpassed the 
accuracy of clinical experts in various applications5, such as referral 
recommendations for sight-threatening retinal diseases6 and pathol-
ogy detection in chest X-ray images7. These models are typically devel-
oped using large volumes of high-quality labels, which requires expert 
assessment and laborious workload1,2. However, the scarcity of experts 
with domain knowledge cannot meet such an exhaustive requirement, 
leaving vast amounts of medical data unlabelled and unexploited.

Self-supervised learning (SSL) aims to alleviate data inefficiency by 
deriving supervisory signals directly from data, instead of resorting 
to expert knowledge by means of labels8–11. SSL trains models to per-
form ‘pretext tasks’ for which labels are not required or can be gener-
ated automatically. This process leverages formidable amounts of 
unlabelled data to learn general-purpose feature representations that 
adapt easily to more specific tasks. Following this pretraining phase, 
models are fine-tuned to specific downstream tasks, such as classifica-
tion or segmentation. The SSL model has outperformed supervised 
learning-based transfer learning (for example, pretraining the models 
with ImageNet12 and categorical labels) in various computer vision 
tasks, even when the SSL models are fine-tuned with smaller amounts 
of data13,14. Besides this label efficiency, SSL-based models perform 

better than supervised models when tested on new data from different 
domains15,16. The combined qualities of strong generalization capac-
ity of representations, and high performance achieved by fine-tuned 
models in many downstream tasks, indicate the great potential of SSL in 
medical AI in which data are abundant and healthcare tasks are diverse 
but labels are scarce1,8.

Colour fundus photography (CFP) and optical coherence tomogra-
phy (OCT) are the most common imaging modalities in ophthalmology 
and such retinal images accumulate quickly in routine clinical practice. 
In addition to illustrating clinical features associated with ocular dis-
eases, these images also provide valuable insights into systemic dis-
eases, a field that has recently been termed ‘oculomics’17,18. For example, 
the optic nerve and inner retinal layers provide a non-invasive view of 
central nervous system tissue19–21, and thus a window into neurodegen-
eration. Similarly, retinal vascular geometry provides insights into other 
vascular organ systems22–25, such as the heart and kidneys. Although 
several studies have shown that SSL can increase performance for indi-
vidual ocular disease detection tasks, such as the diagnosis of diabetic 
macular oedema26, age-related macular degeneration (AMD)27 and 
referable diabetic retinopathy28–30, there has been limited work dem-
onstrating the ability of a single SSL pretrained model to generalize to a 
diverse range of complex tasks. Progress has probably been hampered 
by the challenges involved with curating a large repository of retinal 
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images with extensive linkage to several relevant disease outcomes. 
Moreover, the capabilities of different SSL approaches (contrastive SSL 
versus generative SSL) and the interpretability of SSL models in retinal 
imaging, remain relatively under-explored. Developing an understand-
ing of the specific features that SSL models learn during training is an 
important step for safe and reliable translation to clinical practice.

In this work, we present a new SSL-based foundation model for retinal 
images (RETFound) and systematically evaluate its performance and 
generalizability in adapting to many disease detection tasks. A foun-
dation model is defined as a large AI model trained on a vast quantity 
of unlabelled data at scale resulting in a model that can be adapted to 
a wide range of downstream tasks31,32. Here we construct RETFound 
from large-scale unlabelled retinal images by means of SSL and use it to 
promote the detection of many diseases. Specifically, we develop two 
separate RETFound models, one using CFP and the other using OCT, 
by means of an advanced SSL technique (masked autoencoder15) suc-
cessively on natural images (ImageNet-1k) followed by retinal images 
from the Moorfields diabetic image dataset (MEH-MIDAS) and public 
data (totalling 904,170 CFPs and 736,442 OCTs). We adapt RETFound 
to a series of challenging detection and prediction tasks by fine-tuning 
RETFound with specific task labels, and then validate its performance. 
We consider first the diagnostic classification of ocular diseases, 
including diabetic retinopathy and glaucoma; second, ocular disease 
prognosis, specifically conversion of contralateral (‘fellow’) eyes to 
neovascular (‘wet’) AMD in a 1-year time period and, finally, oculomic 
challenges, specifically the 3-year prediction of cardiovascular dis-
eases (ischaemic stroke, myocardial infarction and heart failure) and a 
neurodegenerative disease (Parkinson’s disease). RETFound achieves 
consistently superior performance and label efficiency in adapting to 
these tasks, compared to state-of-the-art competing models, including 
that pretrained on ImageNet-21k with traditional transfer learning. 
We also probe the interpretation of disease detection performance of  
RETFound with qualitative results and variable-controlling experi-
ments, showing that salient image regions reflect established know-
ledge from ocular and oculomic literature. Finally, we make RETFound 
publicly available so others can use it as the basis for their own down-
stream tasks, facilitating diverse ocular and oculomic research.

Figure 1 gives an overview of the construction and application of 
RETFound. For construction of RETFound, we curated 904,170 CFP 
in which 90.2% of images came from MEH-MIDAS and 9.8% from  
Kaggle EyePACS33, and 736,442 OCT in which 85.2% of them came from 
MEH-MIDAS and 14.8% from ref. 34. MEH-MIDAS is a retrospective data-
set that includes the complete ocular imaging records of 37,401 patients 
with diabetes who were seen at Moorfields Eye Hospital between  
January 2000 and March 2022. After self-supervised pretraining on these 
retinal images, we evaluated the performance and generalizability of 
RETFound in adapting to diverse ocular and oculomic tasks. We selected 
publicly available datasets for the tasks of ocular disease diagnosis. 
Details are listed in Supplementary Table 1. For the tasks of ocular disease 
prognosis and systemic disease prediction, we used a cohort from the 
Moorfields AlzEye study (MEH-AlzEye) that links ophthalmic data of 
353,157 patients, who attended Moorfields Eye Hospital between 2008 
and 2018, with systemic disease data from hospital admissions across  
the whole of England35. We also used UK Biobank36 for external evalua-
tion in predicting systemic diseases. The validation datasets used for 
ocular disease diagnosis are sourced from several countries, whereas 
systemic disease prediction was solely validated on UK datasets due to 
limited availability of this type of longitudinal data. Our assessment of 
generalizability for systemic disease prediction was therefore based on 
many tasks and datasets, but did not extend to vastly different geograph-
ical settings. Details of the clinical datasets are listed in Supplementary  
Table 2 (data selection is introduced in the Methods section).

We compared the performance and label efficiency of RETFound  
against three pretrained comparison models: SL-ImageNet, 
SSL-ImageNet and SSL-Retinal. All models use differing pretraining 

strategies but have the same model architecture as well as fine-tuning 
processes for downstream tasks (architecture details are introduced 
in the Methods section). SL-ImageNet uses traditional transfer learn-
ing, that is, pretraining the model by means of supervised learning on 
ImageNet-21k (about 14 million natural images with categorical labels); 
SSL-ImageNet pretrains the model by means of SSL on ImageNet-1k 
(about 1.4 million natural images) and SSL-Retinal pretrains the model 
using SSL on retinal images from scratch. RETFound uses the weights 
of SSL-ImageNet as a baseline before extending to retinal images 
(equivalent to pretraining the model by means of SSL successively on 
natural images followed by retinal images). The pretraining schemat-
ics are shown in Extended Data Fig. 1. Furthermore, we explored the 
performance of using different SSL strategies, that is, generative SSL 
versus contrastive SSL approaches, by substituting the primary SSL 
technique (that is, masked autoencoder) for SimCLR16, SwAV37, DINO38 
and MoCo-v3 (ref. 14) within the RETFound framework, respectively. 
We reported internal and external evaluation results for these mod-
els. The models were adapted to each task with labelled training data, 
and evaluated on both held-out internal test sets, as well as external 
datasets completely distinct from the training data (details are listed 
in the Methods section). Model performance was reported using the 
area under the receiver operating curve (AUROC) and area under the 
precision-recall curve (AUPR). We calculated P values with the two-sided 
t-test between RETFound and the most competitive comparison model 
for each task to check for significance.

Ocular disease diagnosis
We included eight publicly available datasets to verify the model’s 
performance on several ocular diseases and imaging conditions (Fig. 2). 
RETFound generally achieved the best performance in most datasets 
and SL-ImageNet ranked second, as shown in Fig. 2a. For instance, on 
diabetic retinopathy classification, RETFound achieved AUROC of  
0.943 (95% confidence interval (CI) 0.941, 0.944), 0.822 (95% CI 0.815, 
0.829) and 0.884 (95% CI 0.88, 0.887), respectively, on Kaggle APTOS-
2019, IDRID39 and MESSIDOR-2 (refs. 40,41) datasets, significantly out-
performing SL-ImageNet (all P < 0.001). The superior performance can 
also be observed for glaucoma and the classification of many diseases. 
The AUPR results of RETFound were also significantly higher than the 
compared groups (Extended Data Fig. 2a). For external evaluation, 
we evaluated the performance of RETFound on diabetic retinopathy 
datasets (Kaggle APTOS-2019, IDRID and MESSIDOR-2), which were both 
labelled on the basis of the five-stage International Clinical Diabetic 
Retinopathy Severity scale. We conducted cross evaluation among the 
three datasets, that is, fine-tuned models on one dataset and evaluated 
them on the others. RETFound achieved the best performance in all 
cross evaluations, as shown in Fig. 2b. For instance, when fine-tuned 
on Kaggle APTOS-2019, RETFound achieved AUROC of 0.822 (95% CI 
0.815, 0.829) and 0.738 (95% CI 0.729, 0.747), respectively, on IDRID 
and MESSIDOR-2 datasets, statistically significantly higher than 
SL-ImageNet (P < 0.001) on IDRID and SSL-ImageNet (P < 0.001) on 
MESSIDOR-2. The AUPR results of all groups were low but RETFound 
achieved significantly higher performance (Extended Data Fig. 2b). All 
quantitative results are listed in Supplementary Table 3.

Ocular disease prognosis
For 1-year prognosis of fellow eye converting to wet-AMD, we evalu-
ated the internal performance on data from AlzEye (Fig. 2c). With CFP 
as the input modality, RETFound showed the best performance with 
an AUROC of 0.862 (95% CI 0.86, 0.865), significantly outperform-
ing the comparison groups (P < 0.001). The runner-up SL-ImageNet 
achieved an AUROC of 0.83 (95% CI 0.825, 0.836). With OCT, RETFound 
scored the highest AUROC of 0.799 (95% CI 0.796, 0.802), showing a 
statistically significantly higher AUROC (P < 0.001) than SSL-Retinal. 
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The AUPR results of RETFound are highest with CFP and comparable 
to SSL-Retinal with OCT (Extended Data Fig. 2c).

Systemic diseases prediction
We organized four oculomic tasks to evaluate the model perfor-
mance in predicting the incidence of systemic diseases with retinal 
images (Fig. 3). Although the overall performance was limited in these  
challenging tasks, RETFound has shown significant improvement in 
internal evaluation for both CFP and OCT, as shown in Fig. 3a. For the 
prediction of myocardial infarction with CFP, RETFound achieved 
AUROC of 0.737 (95% CI 0.731, 0.743). SSL-Retinal scored the second-best 
performance but was significantly worse than RETFound (P < 0.001). 
The confusion matrix (Extended Data Table 1) shows that RETFound 
achieved the highest sensitivity of 0.7 and specificity of 0.67. Likewise, 
RETFound also ranked first for prediction of heart failure, ischaemic 
stroke and Parkinson’s disease with AUROCs of 0.794 (95% CI 0.792, 
0.797), 0.754 (95% CI 0.752, 0.756) and 0.669 (0.65, 0.688), respectively. 
RETFound also performed significantly better than the other models 
when using OCT as the input modality. It achieved significantly higher 
AUPR results in all tasks (Extended Data Fig. 3a). External evaluation 
on the UK Biobank (Fig. 3b) showed that RETFound and SSL-Retinal 
performed similarly in prediction of ischaemic stroke. For tasks of 
myocardial infarction, heart failure and Parkinson’s disease, RETFound 
achieved the best performance both with CFP and OCT. RETFound also 
showed significantly higher AUPR in most tasks when it was externally 
evaluated on UK Biobank (Extended Data Fig. 3b).

Label efficiency for disease detection
Label efficiency refers to the amount of training data and labels 
required to achieve a target performance level for a given downstream 
task, which indicates the annotation workload for medical experts.  
RETFound showed superior label efficiency across various tasks (Fig. 4).  
For heart failure prediction, RETFound outperformed the other 
pretraining strategies using only 10% of labelled training data, 

demonstrating the potential of this approach in alleviating data short-
ages. RETFound similarly showed superior label efficiency for diabetic 
retinopathy classification and myocardial infarction prediction. Fur-
thermore, RETFound showed consistently high adaptation efficiency 
(Extended Data Fig. 4), suggesting that RETFound required less time in 
adapting to downstream tasks. For example, RETFound can potentially 
save about 80% of the training time required to achieve convergence 
for the task of predicting myocardial infarction, leading to significant 
reductions in computational costs (for example, credits on Google 
Cloud Platform) when appropriate mechanisms such as early stopping  
are used.

SSL strategies for RETFound
We explored the performance of different SSL strategies, that is, gen-
erative SSL (for example, masked autoencoder) and contrastive SSL 
(for example, SimCLR, SwAV, DINO and MoCo-v3), in the RETFound 
framework. As shown in Fig. 5, RETFound with different contrastive 
SSL strategies showed decent performance in downstream tasks. For 
instance, RETFound with DINO achieved AUROC of 0.866 (95% CI 0.864, 
0.869) and 0.728 (95% CI 0.725, 0.731), respectively, on wet-AMD prog-
nosis (Extended Data Fig. 5) and ischaemic stroke prediction (Fig. 5), 
outperforming the baseline SL-ImageNet (Supplementary Tables 3 
and 4). This demonstrates the effectiveness of RETFound framework 
with diverse SSL strategies. Among these SSL strategies, the masked 
autoencoder (primary SSL strategy for RETFound) performed signifi-
cantly better than the contrastive learning approaches in most disease 
detection tasks (Fig. 5 and Extended Data Fig. 5). All quantitative results 
are listed in Supplementary Table 4.

Model interpretation
To gain insights into the inner-workings of RETFound leading to its 
superior performance and label efficiency in downstream tasks, 
we performed qualitative analyses of the pretext task used for 
self-supervised pretraining and task-specific decisions of RETFound 
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Fig. 1 | Schematic of development and evaluation of the foundation models (RETFound). Stage one constructs RETFound by means of SSL, using CFP and OCT 
from MEH-MIDAS and public datasets. Stage two adapts RETFound to downstream tasks by means of supervised learning for internal and external evaluation.
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(Extended Data Fig. 6). The pretext task of RETFound allows models 
to learn retina-specific context, including anatomical structures and 
disease lesions. As shown in Extended Data Fig. 6a, RETFound was able 
to reconstruct major anatomical structures, including the optic nerve 
and large vessels on CFP, and the nerve fibre layer and retinal pigment 
epithelium on OCT, despite 75% of the retinal image being masked. 
This demonstrates that RETFound has learned to identify and infer 
the representation of disease-related areas by means of SSL, which 

contributes to performance and label efficiency in downstream tasks. 
On top of the reconstruction-based interpretation, we further used an 
advanced explanation tool (RELPROP42) to visualize the salient regions 
of images conducive to classifications made by fine-tuned models in 
downstream tasks (Extended Data Fig. 6b). For ocular disease diagnosis, 
well-defined pathologies were identified and used for classification, 
such as hard exudates and haemorrhage for diabetic retinopathy and 
parapapillary atrophy for glaucoma. For oculomic tasks, we observed 
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that anatomical structures associated with systemic conditions, such 
as the optic nerve on CFP and nerve fibre layer and ganglion cell layer 
on OCT, were highlighted as areas that contributed to the incidence 
prediction of systemic diseases (Extended Data Fig. 6b).

Robustness to age distribution shifts
For ageing-associated systemic diseases, clinically relevant anatomi-
cal structures alter with both ageing43,44 and disease progression19,20,22. 
RETFound was trained to identify general structure alterations for 
detection of systemic diseases (Extended Data Fig. 6b). To further verify 
the extent to which models can learn anatomical structure changes, 
respectively, relating to ageing and disease progression, we evaluated 
performance of the models when using four different control groups 

with varying ages (mean ages 66.8, 68.5, 70.4 and 71.9 years) versus 
a fixed disease group (mean age 72.1 years) in the task of myocardial 
infarction. As shown in Extended Data Fig. 7, the models showed bet-
ter performance when the age difference is larger, indicating that age 
is indeed a confounder for studying ageing-associated diseases. The  
contribution of age can be demonstrated by the extreme case in which 
the age difference between cohorts is maximal (5.3 years in our sce-
nario), at which point a simple logistic regression with the input of age 
achieved an AUROC of 0.63, surpassing SSL-ImageNet and SL-ImageNet. 
When the age difference decreased, the models clearly outperformed 
the logistic regression. We observed that RETFound kept stable per-
formance even when the age difference decreased, which suggested 
that RETFound well identified the disease-related anatomical structure 
alteration and used the information for predicting systemic diseases.
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Fig. 3 | Performance on 3-year incidence prediction of systemic diseases  
with retinal images. a, Internal evaluation. Models are adapted to curated 
datasets from MEH-AlzEye by fine-tuning and internally evaluated on hold-out 
test data. b, External evaluation. Models are fine-tuned on MEH-AlzEye and 
externally evaluated on the UK Biobank. Data for internal and external 
evaluation are described in Supplementary Table 2. Although the overall 
performances are not high due to the difficulty of tasks, RETFound achieved 
significantly higher AUROC in all internal evaluations and most external 

evaluations. For each task, we trained the model with five different random 
seeds, determining the shuffling of training data, and evaluated the models on 
the test set to get five replicas. We derived the statistics with the five replicas. 
The error bars show 95% CI and the bar centre represents the mean value of the 
AUROC. We compare the performance of RETFound with the most competitive 
comparison model to check whether statistically significant differences exist. 
P value is calculated with the two-sided t-test and listed in the figure.
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Discussion
This work introduces a new SSL-based foundation model, RETFound, 
and evaluates its generalizability in adapting to diverse downstream 
tasks. After training on large-scale unlabelled retinal images using an 
advanced SSL technique (masked autoencoder), RETFound can be  
efficiently adapted to a broad range of disease detection tasks, resulting 
in significant performance improvements for detecting ocular diseases 
and predicting cardiovascular and neurodegenerative diseases. It is a 
medical foundation model that has been developed and assessed, and 
shows considerable promise for leveraging such multidimensional data 
without constraints of enormous high-quality labels.

RETFound enhances the performance of detecting ocular diseases 
by learning to identify disease-related lesions. Ocular diseases are 
diagnosed by the presence of well-defined pathological patterns, such 
as hard exudates and haemorrhages for diabetic retinopathy. These 
features involve abnormal variations in colour or structure, showing 
visible differences from the surrounding retina. RETFound can identify 
disease-related patterns and correctly diagnose ocular diseases (for 
example, myopia and diabetic retinopathy cases in Extended Data 
Fig. 6b). In Fig. 2, we observe that RETFound ranks first in various  
tasks, followed by SL-ImageNet. SL-ImageNet pretrains the model 
using supervised learning on ImageNet-21k, which contains 14 million 
images with 21,000 categories of natural objects with diverse shapes 
and textures, such as zebras and oranges. Such diverse characteristics 
allow models to learn abundant low-level features (for example, lines, 
curves and edges) to identify the boundary of abnormal patterns, thus 
improving disease diagnosis when the model adapts to medical tasks. 
In this paper, we demonstrate that by using SSL successively on natural 
images and unlabelled retinal images, a generalizable foundation model 
(RETFound) can be developed to further improve ocular disease diag-
nosis and prognosis, even outperforming the powerful SL-ImageNet.

RETFound learns retina-specific context by SSL on unlabelled retinal 
data to improve the prediction of systemic health states. RETFound 
and SSL-Retinal rank top 2 in both internal and external evaluation in 
predicting systemic diseases by using SSL on unlabelled retinal images 
(Fig. 3). In pretraining RETFound learns representations by perform-
ing a pretext task involving the reconstruction of an image from its 
highly masked version, requiring the model to infer masked informa-
tion with limited visible image patches. Solving such a pretext task 
in retinal images allows the model to learn retina-specific context, 
including anatomical structures such as the optic nerve and retinal 
nerve fibre layer (Extended Data Fig. 6a) that are potential markers 
in retinal images for neurodegenerative diseases and cardiovascular 
diseases17,19,21,45. The confusion matrix shows that RETFound achieves 
the highest sensitivity (Extended Data Table 1), indicating that more 
individuals with a high risk of systemic diseases are identified. The 
evaluation on oculomic tasks demonstrates the use of retinal images 
for incidence prediction and risk stratification of systemic diseases, 
significantly promoted by RETFound.

Compared to SSL-Retinal and SSL-ImageNet, RETFound shows con-
sistently better performance for disease detection (Figs. 2 and 3 and 
Supplementary Table 3), thus demonstrating SSL on retinal and natural  
images is complementary to developing the powerful foundation 
model. The strategy of combining natural images and medical data in 

RETFound SSL-Retinal SSL-ImageNet SL-ImageNet

10 20 50 90 100

Percentage of training data

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C

Heart failure, CFP

10 20 50 90 100

Percentage of training data

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C

Diabetic retinopathy MESSIDOR-2

10 20 50 90 100

Percentage of training data

0.5

0.6

0.7

0.8

A
U

R
O

C

Myocardial infarction, CFP

10 20 50 90 100

Percentage of training data

0.5

0.6

0.7

0.8

0.9
A

U
R

O
C

Diabetic retinopathy IDRID

50% data

45% data

Fig. 4 | Label efficiency in exemplary applications. Label efficiency measures 
the performance with different fractions of training data to understand the 
amount of data required to achieve a target performance level. The dashed 
grey lines highlight the difference in training data between RETFound and the 
most competitive comparison model. RETFound performs better than the 
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Fig. 5 | Comparison of different SSL strategies in RETFound framework on 
exemplar applications. We show AUROC of predicting diabetic retinopathy, 
ischaemic stroke and heart failure by the models pretrained with different SSL 
strategies, including the masked autoencoder (MAE), SwAV, SimCLR, MoCo-v3 
and DINO. The data for systemic disease tasks come from the MEH-AlzEye 
dataset. RETFound with MAE achieved significantly higher AUROC in most 
tasks. The corresponding quantitative results for the contrastive SSL approaches 
are listed in Supplementary Table 4. For each task, we trained the model with 
five different random seeds, determining the shuffling of training data, and 
evaluated the models on the test set to get five replicas. We derived the 
statistics with the five replicas. The error bars show 95% CI and the bar centre 
represents the mean value of the AUPR. We compare the performance of 
RETFound with the most competitive comparison model to check whether 
statistically significant differences exist. P value is calculated with the 
two-sided t-test and listed in the figure.
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model development has also been validated in other medical fields, such 
as chest X-rays6 and dermatology imaging46. We also conducted calibra-
tion analyses for prediction models in oculomic tasks, which examines 
the agreement between predicted probabilities and real incidence.  
A well-calibrated model can provide a meaningful and reliable disease 
prediction as the predicted probability indicates the real likelihood 
of disease occurrence, enabling the risk stratification of diseases47,48.  
We observed that RETFound was better calibrated compared to other 
models and showed the lowest expected calibration error in the reliabil-
ity diagram (Extended Data Fig. 8). This verifies that RETFound gener-
ates reliable predicted probabilities, rather than overconfident ones.

The experiments show that both modalities of CFP and OCT have 
unique ocular and systemic information encoded that is valuable 
in predicting future health states. For ocular diseases, some image 
modalities are commonly used for a diagnosis in which the specific 
lesions can be well observed, such as OCT for wet-AMD. However, such 
knowledge is relatively vague in oculomic tasks as (1) the markers for 
oculomic research on different modalities are under exploration and 
(2) it requires a fair comparison between many modalities with identi-
cal evaluation settings. In this work, we investigate and compare the 
efficacy of CFP and OCT for oculomic tasks with identical training and 
evaluation details (for example, train, validation and/or test data split-
ting is aligned by anonymous patient IDs). We notice that the models 
with CFP and OCT achieve unequal performances in predicting systemic 
diseases (Fig. 3 and Supplementary Table 3), suggesting that CFP and 
OCT contain different levels of information for oculomic tasks. For 
instance, in 3-year incidence prediction of ischaemic stroke, RETFound 
with CFP performs better than with OCT on both MEH-AlzEye (inter-
nal evaluation) and UK Biobank (external evaluation). For the task of 
Parkinson’s disease, RETFound with OCT shows significantly better 
performance in internal evaluation. These observations may indicate 
that various disorders of ageing (for example, stroke and Parkinson’s 
disease) manifest different early markers on retinal images. A practical 
implication for health service providers and imaging device manu-
facturers is to recognize that CFP has continuing value, and should 
be retained as part of the standard retinal assessment in eye health 
settings. This observation also encourages oculomic research to inves-
tigate the strength of association between systemic health with the 
information contained in several image modalities.

There is a significant fall in performance when adapted models are 
tested against new cohorts that differ in the demographic profile, and 
even on the imaging devices that were used (external evaluation phase). 
This phenomenon is observed both in the external evaluation of ocular 
disease diagnosis (Fig. 2b) and systemic disease prediction (Fig. 3b). 
For example, the performance on ischaemic stroke drops (RETFound’s 
AUROC decreases by 0.16 with CFP and 0.19 with OCT). In the challeng-
ing oculomic tasks, the age and ethnicity profile of the internal and 
external validation cohorts (MEH-AlzEye and UK Biobank) as well as the 
imaging devices are significantly different (Supplementary Table 2), 
and this is likely to be reflected in the drop in performance when exter-
nally evaluated in the UK Biobank cohort. Compared to other models, 
RETFound achieves significantly higher performance in external evalu-
ation in most tasks (Fig. 3b) as well as different ethnicities (Extended 
Data Figs. 9–11), showing good generalizability.

We observe that RETFound maintains competitive performance for 
disease detection tasks, even when substituting various contrastive 
SSL approaches into the framework (Fig. 5 and Extended Data Fig. 5). 
It seems that the generative approach using the masked autoencoder 
generally outperforms the contrastive approaches, including SwAV, 
SimCLR, MoCo-v3 and DINO. However, it is worth noting that assert-
ing the superiority of the masked autoencoder requires caution, given 
the presence of several variables across all models, such as network 
architectures (for example, ResNet-50 for SwAV and SimCLR, Trans-
formers for the others) and hyperparameters (for example, learning 
rate scheduler). Our comparison demonstrates that the combination of 

powerful network architecture and complex pretext tasks can produce 
effective and general-purpose medical foundation models, aligning 
with the insights derived from large language models in healthcare49,50. 
Furthermore, the comparison further supports the notion that the 
retinal-specific context learned from the masked autoencoder’s pre-
text task, which includes anatomical structures such as the optic nerve 
head and retinal nerve fibre layer (as shown in Extended Data Fig. 6a), 
indeed provides discriminative information for the detection of ocular 
and systemic diseases.

We believe that research on medical foundation models, such as 
RETFound, has the potential to democratize access to medical AI and 
accelerate progress towards widespread clinical implementation.  
To this end, foundation models must learn powerful representations 
from enormous volumes of medical data (1.6 million retinal images in 
our case), which is often only accessible to large institutions with effi-
cient dataset curation workflows. Also, SSL pretraining of foundation 
models requires many computational resources to achieve training 
convergence. We used eight NVIDIA Tesla A100 (40 GB) graphical pro-
cessing units (GPUs) on the Google Cloud Platform, requiring 2 weeks 
of developing time. By contrast, the data and computational require-
ments required to fine-tune RETFound to downstream tasks are com-
paratively small and therefore more achievable for most institutions. 
We required only one NVIDIA Tesla T4 (16 GB) GPU, requiring about 
1.2 h with a dataset of 1,000 images. Moreover, foundational models 
offer the potential to raise the general quality of healthcare AI models. 
Their adoption may help avoid superficially impressive models that 
rarely affect clinical care. These poorly generalizable models consume 
significant resources and can feed scepticism about the benefits of 
AI in healthcare. By making RETFound publicly available, we hope to 
accelerate the progress of AI in medicine by enabling researchers to 
use our large dataset to design models for use in their own institutions 
or to explore alternative downstream applications.

Although this work systematically evaluates RETFound in detecting 
and predicting diverse diseases, there are several limitations and chal-
lenges requiring exploration in future work. First, most data used to 
develop RETFound came from UK cohorts, therefore it is worth explor-
ing the impact of introducing a larger dataset by incorporating retinal 
images worldwide, with more diverse and balanced data distribution. 
Second, although we study the performance with modalities of CFP 
and OCT, the multimodal information fusion between CFP and OCT 
has not been investigated, which might lead to further improvement 
in performance. Finally, some clinically relevant information, such as 
demographics and visual acuity that may work as potent covariates for 
ocular and oculomic research, has not been included in SSL models.  
Combining these, we propose to further enhance the strength of  
RETFound in subsequent iterations by introducing even larger quan-
tities of images, exploring further modalities and enabling dynamic 
interaction across multimodal data. While we are optimistic about 
the broad scope of RETFound to be used for a range of AI tasks, we 
also acknowledge that enhanced human–AI integration is critical to 
achieving true diversity in healthcare AI applications.

In conclusion, we have verified the efficacy and efficiency of  
RETFound in adapting to diverse healthcare applications, showing 
high performance and generalizability in detecting ocular diseases and 
significant improvement in predicting systemic diseases. By overcom-
ing current barriers to clinical AI applications—notably, the extent of 
labelled data and limited performance and generalizability—SSL-based 
foundation models open the door to accelerated, data-efficient devices 
that may transform care for patients with ocular or systemic diseases.
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Methods

Datasets for developing RETFound
We curate large collections of unannotated retinal images for SSL, total-
ling 904,170 CFPs and 736,442 OCT scans. Of these, 815,468 (90.2%) 
CFPs and 627,133 (85.2%) OCTs are from Moorfields Diabetic imAge 
dataSet (MEH-MIDAS), and 88,702 (9.8%) CFPs are Kaggle EyePACS and 
109,309 (14.8%) OCTs that come from ref. 34. MEH-MIDAS is a retrospec-
tive dataset that includes the complete ocular imaging records of 37,401 
patients (16,429 female, 20,966 male and six unknown) with diabetes 
who were seen at Moorfields Eye Hospital, London, UK between 2000 
and 2022. The age distribution has a mean value of 64.5 and standard 
deviation of 13.3. The ethnicity distributes diversly: British (13.7%), 
Indian (14.9%), Caribbean (5.2%), African (3.9%), other ethnicity (37.9%) 
and not stated (24.4%). MEH-MIDAS includes various imaging devices, 
such as topcon 3DOCT-2000SA (Topcon), CLARUS (ZEISS) and Triton  
(Topcon). EyePACS includes images devices of Centervue DRS  
(Centervue), Optovue iCam (Optovue), Canon CR1/DGi/CR2 (Canon) and 
Topcon NW (Topcon). Reference 34 contains images from SPECTRALIS  
(Heidelberg).

Data for ocular disease diagnosis
We evaluate the model performance on three different categories of 
disease detection tasks. The first category of tasks involves diagnostic 
classification of ocular diseases with publicly available ophthalmic data. 
For diabetic retinopathy diagnosis, Kaggle APTOS-2019 (India), IDRID 
(India) and MESSIDOR-2 (France) are used. The labels for diabetic retin-
opathy are based on the International Clinical Diabetic Retinopathy 
Severity scale, indicating five stages from no diabetic retinopathy to 
proliferative diabetic retinopathy. For glaucoma, PAPILA51 (Spain) and 
Glaucoma Fundus52 (South Korea) are included. Glaucoma Fundus and 
PAPILA have three categorical labels, non-glaucoma, early glaucoma 
(suspected glaucoma) and advanced glaucoma. For datasets with sev-
eral diseases, JSIEC53 (China), Retina and OCTID54 (India) are included. 
JSIEC includes 1,000 images with 39 categories of common referable 
fundus diseases and conditions. Retina has labels of normal, glaucoma, 
cataract and retina disease. OCTID includes 470 OCT scans with labels 
of normal, macular hole, AMD, central serous retinopathy and diabetic 
retinopathy. The grading protocols for the public datasets are summa-
rized as: IDRiD, two medical experts provided adjudicated consensus 
grades; MESSIDOR-2, adjudicated by a panel of three retina specialists 
in accordance with a published protocol55; APTOS-2019, Kaggle dataset 
with limited information but possibly a single clinician grader; PAPILA, 
labelling and segmentation by two experts following extensive clinical 
examination and testing procedure including a retrospective clinical 
record review; Glaucoma Fundus, agreement of two specialists based 
on visual fields and extensive imaging and JSIEC, labelled by ophthal-
mologists and confirmed by senior retina specialists. Disagreements 
resolved by panel of five senior retina specialists were as follows: Retina, 
details not available and OCTID, describes image labelling based on 
the diagnosis of retinal clinical experts but does not specify duplicate 
adjudication. The details of datasets, such as imaging devices, country 
and label category, are listed in Supplementary Table 1.

Data for disease prognosis and prediction
For disease prognosis of fellow eye converting to wet-AMD in 1 year, we 
use data from the Moorfields AlzEye study (MEH-AlzEye). MEH-AlzEye 
is a retrospective cohort study linking ophthalmic data of 353,157 
patients, who attended Moorfields Eye Hospital between 2008 and 
2018, with systemic health data from hospital admissions across the 
whole of England. Systemic health data are derived from Hospital 
Episode Statistics (HES) data relating to admitted patient care, with 
a focus on cardiovascular disease and all-cause dementia. Diagnostic  
codes in HES admitted patient care are reported according to the tenth 
revision of the ICD (International Statistical Classification of Diseases)56. 

In line with previous reports, we selected the study cohort using ICD 
code: stroke (I23-I24), myocardial infarction (I21-I22), heart failure 
(I50) and Parkinson’s disease (G20). Among 186,651 patients with HES, 
6,504 patients are diagnosed with wet-AMD in at least one eye, 819 
patients have retinal imaging within 1 year before their fellow eyes con-
vert to wet-AMD and 747 patients with their fellow eyes not converting  
wet-AMD, after excluding other eye diseases. The final category of 
tasks studies the 3-year prediction of systemic diseases, with a focus 
on cardiovascular and neurodegenerative dysfunctions, using the 
MEH-AlzEye and UK Biobank. The UK Biobank includes 502,665 UK 
residents aged between 40 and 69 years who are registered with the 
National Health Service. Among all participants, 82,885 get CFP and 
OCT examinations and a total of 171,500 retinal images are collected. 
For each patient, we only include the retinal image from the left eye in 
one visit, to avoid potential bias by inconsistent individual visits. For 
internal evaluation, we split the patient groups into training, validation 
and test sets at a ratio of 55:15:30%. The training set is used to revise 
model parameters to achieve objective function. The validation set is 
for monitoring training converge and checkpoint selection. The test 
set is used to test the saved model checkpoint and evaluate the internal  
performance. For external validation, all patient data are used for 
evaluating the saved model checkpoint. The detailed data flowcharts 
are listed in Supplementary Figs. 1–5.

Data processing and augmentation for SSL
For CFP image preprocessing, we use AutoMorph57, an automated reti-
nal image analysis tool, to exclude the background and keep the retinal 
area. All images are resized to 256 × 256 with cubic interpolation. For 
OCT, we extract the middle slices and resize them to 256 × 256. We fol-
low the same data augmentation as the masked autoencoder in model 
training, including random crop (lower bounds 20% of the whole image 
and upper bounds 100%) and resizing the cropped patches to 224 × 224, 
random horizontal flipping and image normalization.

RETFound architecture and implementation
We use a specific configuration of the masked autoencoder15, which 
consists of an encoder and a decoder. The architecture detail is shown 
in Supplementary Fig. 6. The encoder uses a large vision Transformer58 
(ViT-large) with 24 Transformer blocks and an embedding vector size 
of 1,024, whereas the decoder is a small vision Transformer (Vit-small) 
with eight Transformer blocks and an embedding vector size of 512. The 
encoder takes unmasked patches (patch size of 16 × 16) as input and 
projects it into a feature vector with a size of 1,024. The 24 Transformer 
blocks, comprising multiheaded self-attention and multilayer percep-
tron, take feature vectors as input and generate high-level features. 
The decoder inserts masked dummy patches into extracted high-level 
features as the model input and then reconstructs the image patch 
after a linear projection. In model training, the objective is to recon-
struct retinal images from the highly masked version, with a mask 
ratio of 0.75 for CFP and 0.85 for OCT. The batch size is 1,792 (8 GPUs ×  
224 per GPU). The total training epoch is 800 and the first 15 epochs 
are for learning rate warming up (from 0 to a learning rate of 1 × 10−3). 
The model weights at the final epoch are saved as the checkpoint for 
adapting to downstream tasks.

Adaptation to downstream tasks
In adapting to downstream tasks, we only need the encoder (ViT-large) 
of the foundation model and discard the decoder. The encoder  
generates high-level features from retinal images. A multilayer per-
ceptron takes the features as input and outputs the probability of 
disease categories. The category with the highest probability will be 
defined as the final classification. The number of categories decides 
the neuron of the final layer of the multilayer perceptron. We include 
label smoothing to regulate the output distribution thus prevent-
ing overfitting of the model by softening the ground-truth labels 



Article
in the training data. The training objective is to generate the same  
categorical output as the label. The batch size is 16. The total training 
epoch is 50 and the first ten epochs are for learning rate warming up 
(from 0 to a learning rate of 5 × 10−4), followed by a cosine annealing 
schedule (from learning rates of 5 × 10−4 to 1 × 10−6 in the rest of the 40 
epochs). After each epoch training, the model will be evaluated on 
the validation set. The model weights with the highest AUROC on the 
validation set will be saved as the model checkpoint for internal and  
external evaluation.

Contrastive SSL implementation
We replace the primary SSL approach (that is, masked autoencoder) 
with SimCLR16, SwAV37, DINO38 and MoCo-v3 (ref. 14) in the RETFound 
framework to produce variants of the pretrained model for comparison. 
For SSL training with each contrastive learning approach, we follow the 
recommended network architectures and hyperparameter settings 
from the published papers for optimal performance. We first load the 
pretrained weights on ImageNet-1k to the models and further train the 
models with 1.6 million retinal images with each contrastive learning 
approach to obtain pretrained models. We then follow the identical 
process of transferring the masked autoencoder to fine-tune those 
pretrained models for the downstream disease detection tasks.

Explanations for fine-tuned models
We use RELPROP42 specified for Transformer-based networks. The 
method uses layer-wise relevance propagation to compute relevancy 
scores for each attention head in each layer and then integrates them 
throughout the attention graph, by combining relevancy and gradient 
information. As a result, it visualizes the areas of input images that lead 
to a certain classification. RELPROP has been shown to outperform 
other well-known explanation techniques, such as GradCam59.

Computational resources
SSL typically benefits from a large batch size for training and extract-
ing context from data, which requires powerful GPUs for computa-
tion. We use eight NVIDIA Tesla A100 (40 GB) on the Google Cloud 
Platform. It takes about 14 days to develop RETFound. We allocate an 
equal computational cost to each SSL approach for pretraining. For 
fine-tuning RETFound to downstream tasks, we use NVIDIA Tesla T4 
(16 GB). Fine-tuning takes about 70 min for every 1,000 images.

Evaluation and statistical analysis
All task performances are evaluated by the classification metrics known 
as AUROC and AUPR, computed from the receiver operating charac-
teristics and precision-recall curves of classifiers, respectively. For 
ocular prognosis and oculomic prediction tasks, the AUROC and AUPR 
are calculated in a binary setting. For multiclass classification, such as 
five-stage diabetic retinopathy and multicategory disease diagnosis, 
we calculate the AUROC and AUPR for each disease category and then 
average them to get the general AUROC and AUPR. For each task, we 
train the model with five different random seeds, determining the 
shuffling of training data. We calculate the mean and standard  
deviation of the performance over the five iterations and calculate the 
standard error by (standard deviation/ 5 ). We obtain the 95% CI by 
means of 1.96 × standard error. We use the two-sided t-tests between 
the performance of RETFound and the most competitive comparison 
model to show whether significant differences exist.

Ethics statement
This study involves human participants and was approved by the 
London-Central Research Ethics Committee (18/LO/1163, approved 
1 August 2018), Advanced statistical modelling of multimodal data 
of genetic and acquired retinal diseases (20/HRA/2158, approved 
5 May 2020) and the Confidential Advisory Group for Section 251  
support (18/CAG/0111, approved 13 September 2018). The National 

Health Service Health Research Authority gave final approval on 13 
September 2018. Moorfields Eye Hospital NHS Foundation Trust vali-
dated the de-identifications. Only de-identified retrospective data 
were used for research, without the active involvement of patients.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The MIDAS dataset consists of routinely collected healthcare data. 
Owing to its sensitive nature and the risk of reidentification, the dataset 
is subject to controlled access by means of a structured application 
process. Data access enquiries may be made to enquiries@insight.
hdrhub.org and we will aim to respond within 2 weeks. Further details 
about the data request pipeline may be found on the INSIGHT Health 
Data Research Hub website https://www.insight.hdrhub.org. The AlzEye 
dataset is subject to the contractual restrictions of the data sharing 
agreements between National Health Service Digital, Moorfields Eye 
Hospital and University College London, and is not available for access 
beyond the AlzEye research team. National and international collabora-
tions are welcomed, although restrictions on access to the cohort mean 
that only the AlzEye researchers can directly analyse individual-level 
systemic health data. More details can be found at https://reading-
centre.org/studies/artificial_intelligence/alzeye. UK Biobank data are 
available at https://www.ukbiobank.ac.uk/. Data for ocular disease 
experiments are publicly available online and can be accessed through 
the following links: IDRID (https://ieee-dataport.org/open-access/
indian-diabetic-retinopathy-image-dataset-idrid), MESSIDOR-2 (https://
www.adcis.net/en/third-party/messidor2/), APTOS-2019 (https://
www.kaggle.com/competitions/aptos2019-blindness-detection/data), 
PAPILA (https://figshare.com/articles/dataset/PAPILA/14798004/1), 
Glaucoma Fundus (https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/1YRRAC), JSIEC (https://zenodo.
org/record/3477553), Retina (https://www.kaggle.com/datasets/jr2ngb/
cataractdataset) and OCTID (https://borealisdata.ca/dataverse/OCTID).

Code availability
The code used to train, fine-tune and evaluate RETFound from Y.Z. 
is available at https://github.com/rmaphoh/RETFound_MAE, which 
is based on PyTorch. Furthermore, a Keras version implemented by 
Y.K. is available at https://github.com/uw-biomedical-ml/RETFound_
MAE. Please note that the reported results are obtained from PyTorch  
models. Images were processed with automated retinal image analysis 
tool AutoMorph v.1.0 (https://github.com/rmaphoh/AutoMorph). 
Image data were extracted from Dicom files with Pydicom v.2.3.0. 
Results were further analysed and visualized with Python v.3.6, NumPy 
v.1.19.5, SciPy v.1.5.4, seaborn v.0.12.0, Matplotlib v.3.6.1, pandas v.1.5.0, 
Scikit-Learn v.1.1.3 and Pillow v.9.2.0. Heatmaps were generated with 
RELPROP (https://github.com/hila-chefer/Transformer-Explainability).
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Extended Data Fig. 1 | Illustration of training pipeline of RETFound and 
comparison baselines. The compared baselines include SL-ImageNet, 
SSL-ImageNet, and SSL-Retinal. SL-ImageNet trains the model via supervised 
learning on ImageNet-21k (14 million images and categorical labels); 
SSL-ImageNet trains the model on ImageNet-1k (1.4 million images) via SSL; 
SSL-Retinal trains the model on retinal images via SSL from scratch; RETFound 
trains the model on retinal images via SSL from the weights of SSL-ImageNet. 
*kayak picture is used to illustrate the method pipeline.



Extended Data Fig. 2 | Performance (AUPR) on ocular disease diagnostic 
classification. a, internal evaluation, models are adapted to each dataset via 
fine-tuning and internally evaluated on hold-out test data. The dataset details 
are listed in Supplementary Table 1. b, external evaluation, models are fine- 
tuned on one diabetic retinopathy dataset and externally evaluated on the 
others. c, performance on ocular disease prognosis. The models are fine-tuned 
to predict the conversion of fellow eye to wet-AMD in 1 year and evaluated 

internally. For each task, we trained the model with 5 different random seeds, 
determining the shuffling of training data, and evaluated the models on the 
test set to get 5 replicas. We derived the statistics with the 5 replicas. The error 
bars show 95% confidence intervals and the bars’ centre represents the mean 
value of the AUPR. We compare the performance of RETFound with the most 
competitive comparison model to check if statistically significant differences 
exist. p-value is calculated with the two-sided t-test and listed in the figure.



Article

Extended Data Fig. 3 | Performance (AUPR) on 3-year incidence prediction  
of systemic diseases with retinal images. a, internal evaluation, models are 
adapted to curated datasets from MEH-AlzEye via fine-tuning and internally 
evaluated on hold-out test data. b, external evaluation, models are fine-tuned 
on MEH-AlzEye and externally evaluated on UK Biobank. Data for internal and 
external evaluation is described in Supplementary Table 2. For each task, we 
trained the model with 5 different random seeds, determining the shuffling of 

training data, and evaluated the models on the test set to get 5 replicas.  
We derived the statistics with the 5 replicas. The error bars show 95% 
confidence intervals and the bars’ centre represents the mean value of the 
AUPR. We compare the performance of RETFound with the most competitive 
comparison model to check if statistically significant differences exist. p-value 
is calculated with the two-sided t-test and listed in the figure.



Extended Data Fig. 4 | Adaptation efficiency in exemplar applications. 
Adaptation efficiency refers to the time required to achieve training convergence. 
We show the performance on validation sets with the same hyperparameters 
such as learning rate. The gray dash lines highlight the time point when the 
model checkpoint is saved and the time difference between RETFound and the 

most competitive comparison model is calculated. RETFound saves 80% of 
training time in adapting to 3-year incidence prediction of myocardial 
infarction and 46% in diabetic retinopathy MESSIDOR-2. 95% confidence 
intervals of AUROC are plotted in colour bands and the mean values are shown 
as centre lines.
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Extended Data Fig. 5 | Comparison of different SSL strategies in RETFound 
framework. We show AUROC of predicting ocular diseases and systemic 
diseases by the models pretrained with different SSL strategies, including  
the masked autoencoder (MAE), SwAV, SimCLR, MoCo-v3, and DINO. The 
corresponding quantitative results for the contrastive SSL approaches are 
listed in Supplementary Table 4. For each task, we trained the model with 5 
different random seeds, determining the shuffling of training data, and 

evaluated the models on the test set to get 5 replicas. We derived the statistics 
with the 5 replicas. The error bars show 95% confidence intervals and the bars’ 
centre represents the mean value of the AUPR. We compare the performance of 
RETFound with the most competitive comparison model to check if statistically 
significant differences exist. p-value is calculated with the two-sided t-test and 
listed in the figure.



Extended Data Fig. 6 | Qualitative results of RETFound. a, Reconstructed 
colour fundus photographs and optical coherent tomography scans from 
highly masked images in pretext task. Although with few patches visible, 
RETFound infers the retina-specific anatomical structures (e.g. optic nerve and 
retinal nerve fibre layer) and disease lesions, which are markers for multiple 
diseases. b, Heatmaps highlighting the areas that contribute to the classification  

of the models in various downstream tasks. Red colour indicates high 
contribution. The well-defined pathologies of ocular diseases are identified 
and used for classification. For the prediction of systemic diseases, some 
anatomical structures associated with systemic conditions, e.g. optic nerve 
and vasculature on CFP and ganglion cell layer and macular area on OCT, are 
highlighted.
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Extended Data Fig. 7 | Performance on various age distributions in 
predicting myocardial infarction. The disease group remains unchanged 
(mean value of age is 72.1) while the four control groups are sampled with 
various age distributions (mean values of age are respectively 66.8, 68.5, 70.4, 
and 71.9). The X axis shows the age difference between disease group and 
control groups. With each control group, we evaluate the performance of 
predicting myocardial infarction. The performance of RETFound remains 

robust to age difference while that of compared models drops when the age 
difference decreases. Logistic regression uses age as input. The logistic 
regression performs well when age difference is large (about 6) but clearly 
worse than SSL models when the difference becomes smaller. 95% confidence 
intervals are plotted in colour bands and the mean value of performances are 
shown as the band centres.



Extended Data Fig. 8 | Reliability diagrams and expected calibration error 
(ECE) for prediction models. Reliability diagrams measure the consistency 
between the prediction probabilities of an event (e.g. myocardial infarction) 
with the actual chance of observing the event. The dashed line (diagonal line) 

indicates a perfectly calibrated model and the deviation represents the 
miscalibration. RETFound is closest to diagonal lines and the ECE is lowest 
among all models.



Article

Extended Data Fig. 9 | Performance in predicting heart failure across 
ethnicities. We show AUROC of predicting 3-year heart failure in subsets with 
different ethnicity, including White, Asian or Asian British, and Black or Black 
British subgroups, the three largest major categories of ethnicity as described 
by the UK Government’s Office for National Statistics. Data is from MEH-AlzEye 
test set. The first column shows the performance on all test data, followed by 
results on three subgroups. The cohort quantity is listed in titles. We trained 

the model with 5 different random seeds, determining the shuffling of training 
data, and evaluated the models on the test set to get 5 replicas. We derived the 
statistics with the 5 replicas. The error bars show 95% confidence intervals and 
the bars’ centre represents the mean value of the AUPR. We compare the 
performance of RETFound with the most competitive comparison model to 
check if statistically significant differences exist. p-value is calculated with the 
two-sided t-test and listed in the figure.



Extended Data Fig. 10 | Performance in predicting myocardial infarction 
across ethnicities. We show AUROC of predicting 3-year myocardial infarction 
in subsets with different ethnicity. Data is from MEH-AlzEye test set. The first 
column shows the performance on all test data, followed by results on White, 
Asian or Asian British, and Black or Black British cohorts. The cohort quantity is 
listed in titles. We trained the model with 5 different random seeds, determining  

the shuffling of training data, and evaluated the models on the test set to get 5 
replicas. We derived the statistics with the 5 replicas. The error bars show 95% 
confidence intervals and the bars’ centre represents the mean value of the 
AUPR. We compare the performance of RETFound with the most competitive 
comparison model to check if statistically significant differences exist. p-value 
is calculated with the two-sided t-test and listed in the figure.



Article

Extended Data Fig. 11 | Performance in predicting ischaemic stroke across 
ethnicities. We show AUROC of predicting 3-year ischaemic stroke in subsets 
with different ethnicity. Data is from MEH-AlzEye test set. The first column 
shows the performance on all test data, followed by results on White, Asian or 
Asian British, and Black or Black British cohorts. The cohort quantity is listed in 
titles. We trained the model with 5 different random seeds, determining the 

shuffling of training data, and evaluated the models on the test set to get 5 
replicas. We derived the statistics with the 5 replicas. The error bars show 95% 
confidence intervals and the bars’ centre represents the mean value of the 
AUPR. We compare the performance of RETFound with the most competitive 
comparison model to check if statistically significant differences exist. p-value 
is calculated with the two-sided t-test and listed in the figure.



Extended Data Table 1 | Confusion matrix on 3-year prediction of myocardial infarction

a, confusion matrix with CFP. b, confusion matrix with OCT. RETFound shows the highest sensitivity and specificity.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The code used to train, fine-tune, and evaluate RETFound from Yukun Zhou is available at https://github.com/rmaphoh/RETFound_MAE 
which bases on PyTorch. Additionally, a Keras version implemented by Yuka Kihara is available at https://github.com/uw-biomedical-ml/
RETFound_MAE. Please note that the reported results are obtained from PyTorch models. Image data was extracted from Dicom files with 
Pydicom v2.3.0 (https://pydicom.github.io). Images were processed with automated retinal image analysis tool AutoMorph v1.0 (https://
github.com/rmaphoh/AutoMorph). 

Data analysis Data was analysed with Python v3.6 (https://www.python.org/), NumPy v1.19.5 (https://github.com/numpy/numpy), SciPy v1.5.4 (https:// 
www.scipy.org/), seaborn v0.12.0 (https://github.com/mwaskom/seaborn), Matplotlib v3.6.1 (https://github.com/matplotlib/matplotlib), 
pandas v1.5.0 (https://github.com/pandas-dev/pandas), Scikit-Learn v1.1.3 (https://scikit-learn.org/stable), Pillow v9.2.0 (https://pypi.org/
project/Pillow). Heatmaps were generated with RELPROP (https://github.com/hila-chefer/Transformer-Explainability).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The MIDAS dataset consists of routinely collected healthcare data. Due to its sensitive nature and the risk of reidentification, the dataset is subject to controlled 
access via a structured application process. Data access enquiries may be made to enquiries@insight.hdrhub.org and we will aim to respond within two weeks. 
Further details about the data request pipeline may be found on the INSIGHT Health Data Research Hub website https://www.insight.hdrhub.org. The AlzEye 
dataset is subject to the contractual restrictions of the data sharing agreements between National Health Service Digital, Moorfields Eye Hospital and University 
College London and are not available for access beyond the AlzEye research team. National and international collaborations are welcomed though restrictions on 
access to the cohort mean that only the AlzEye researchers can directly analyse individual-level systemic health data. More details can be found at https://
readingcentre.org/studies/artificial_intelligence/alzeye. UK Biobank data is available at https://www.ukbiobank.ac.uk/. 
 
Data for ocular disease experiments are publicly available online and can be accessed via the links: IDRID (https://ieee-dataport.org/open-access/indian-diabetic-
retinopathy-image-dataset-idrid), MESSIDOR-2 (https://www.adcis.net/en/third-party/messidor2/), APTOS-2019 (https://www.kaggle.com/competitions/
aptos2019-blindness-detection/data), PAPILA (https://figshare.com/articles/dataset/PAPILA/14798004/1), Glaucoma Fundus (https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/1YRRAC), JSIEC (https://zenodo.org/record/3477553), Retina (https://www.kaggle.com/datasets/jr2ngb/
cataractdataset), OCTID (https://borealisdata.ca/dataverse/OCTID). 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Biological sex information for MEH-MIDAS and MEH-AlzEye was collected via self-report. MEH-MIDAS includes 37,401 
patients (16,429 female, 20,966 male, and 6 unknown) and MEH-AlzEye includes 353,157 patients (190,494 female and 
162,663 male). Experiments were conducted both on female and male. We used all MEH-MIDAS data to develop RETFound 
models and subsets of MEH-AlzEye for downstream validation (detailed in Supplementary Table 2).

Population characteristics MEH-MIDAS is a retrospective dataset which includes the complete ocular imaging records of 37,401 patients with diabetes 
who were seen at Moorfields Eye Hospital, London, United Kingdom between 2000 and 2022. The age distribution has a 
mean value of 64.5 and standard deviation of 13.3. The ethnicity distributes diversly: British (13.7%), Indian (14.9%), 
Caribbean (5.2%), African (3.9%), other ethnicity (37.9%), not stated (24.4%). MEH-MIDAS includes various imaging devices, 
such as topcon 3DOCT-2000SA (Topcon), CLARUS (ZEISS), and Triton (Topcon). 
 
MEH-AlzEye is a retrospective cohort study linking ophthalmic data of 353,157 patients, who attended Moorfields Eye 
Hospital between 2008 and 2018, with systemic health data from hospital admissions across the whole of England. Systemic 
health data are derived from Hospital Episode Statistics (HES) data relating to admitted patient care (APC), with a focus on 
cardiovascular disease and all-cause dementia. More details can be found in the method section. Selections of study cohort 
were shown in Supplementary Figure 2-6 and characteristics were listed in Supplementary Table 2.  
 
The UK Biobank includes 502,665 UK residents aged between 40 and 69 years who are registered with the National Health 
Service. Among all participants, 82,885 get CFP and OCT examinations and a total of 171,500 retinal images are collected. 
Selections of study cohort were shown in Supplementary Figure 2-6 and characteristics were listed in Supplementary Table 2.

Recruitment MEH-MIDAS is a retrospective dataset which includes the complete ocular imaging records of 37,401 patients with diabetes 
who were seen at Moorfields Eye Hospital, London, United Kingdom between 2000 and 2022. MEH-AlzEye is a retrospective 
cohort study linking ophthalmic data of 353,157 patients who attended Moorfields Eye Hospital between 2008 and 2018. 

Ethics oversight This study involves human participants and was approved by the London-Central Research Ethics Committee (18/LO/1163, 
approved 01/08/2018), Advanced statistical modelling of multimodal data of genetic and acquired retinal diseases (20/
HRA/2158, approved 05/05/2020), and the Confidential Advisory Group for Section 251 support (18/CAG/0111, approved 
13/09/2018). The National Health Service Health Research Authority gave final approval on 13 September 2018. Moorfields 
Eye Hospital NHS Foundation Trust validated the de-identifications. Only de-identified retrospective data was used for 
research, without the active involvement of patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Data for developing RETFound model was from MoorfIelds Diabetic imAge dataSet (MEH-MIDAS) and public data (totalling 904,170 CFPs and 
736,442 OCTs). Data for ocular disease diagnosis were from public datasets, detailed in Supplementary Table 1. Data for systemic disease 
prediction were from Moorfields AlzEye project and selected cohorts were introduced in Supplementary Table 2. Datasets were chosen based 
on the availability of labels that would permit external validation of the different fine-tuned RETFound models, which is dependent on the 
specific clinical task being evaluated. The chosen external validation datasets were deemed to be suitable based on their parameters, which 
are summarised Supplementary Information Table 1 Dataset characteristics. Formal sample size calculations were not performed due to the 
lack of established methods when applied to machine-learning classification studies.

Data exclusions Data failed image processing with AutoMorph were excluded. Data without systemic health labels were excluded. For more details please 
refer to the method section.

Replication All patients were randomly selected and were not correlated in any way. The replication of experiment results were confirmed in 5 times with 
5 different random seeds.

Randomization The training/validation/testing data for downstream tasks were randomly splitted in ratio of 55%:15%:30%. For each patient, we only included 
the left eye data from one visit to avoid potential bias by inconsistent individual visits.

Blinding When assigning patients randomly to training, validation and testing groups investigators were blinded to patient covariates and all features in 
the dataset not required to perform the research. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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