Associations of inner retinal layers with risk of incident dementia: An individual participant data analysis of four prospective cohort studies

Frank C. T. van der Heide1,2,3,4 | Anthony Khawaja5 | Tos T. J. M. Berendschot3 | Thomas J. Littlejohns6 | Elżbieta Kuźma7 | Robert Luben5,8 | Praveen J. Patel5 | Paul J. Foster5 | The Maastricht Study Consortium1,2,3,9,10,11,12,13 | Geir Bertelsen14,15 | Therese von Hanno16,17 | Bente Johnsen15,17,18 | Henrik Schirmer17,19,20 | Sara C. L. Rebouças21 | Leslie Grasset21 | Cécile Delcourt21 | Catherine Helmer21 | UK Biobank Eye & Vision Consortium | E3 consortium | Coen D. A. Stehouwer1,2

1CARIM School for Cardiovascular Diseases, Maastricht University (UM), 6229 ER, Maastricht, the Netherlands
2Department of Internal Medicine, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
3University Eye Clinic Maastricht, MUMC+, Maastricht, the Netherlands
4Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
5NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
6Nuffield Department of Population Health, University of Oxford, Oxford, UK
7Albertinen-Haus Centre for Geriatrics and Gerontology, University of Hamburg, Hamburg, Germany
8MRC Epidemiology Unit, Cambridge, UK
9CAPHRI Care and Public Health Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
10Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
11Department of Psychiatry and Neuropsychology and MHeNs School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
12Heart and Vascular Centre, Maastricht University Medical Centre +, Maastricht, the Netherlands
13Department of Social Medicine, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
14Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
15Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
16Department of Ophthalmology, Nordland Hospital Trust, Bodø, Norway
17Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
18Department of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
19Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
20Department of Cardiology, Akershus University Hospital, Lørenskog, Norway
21University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

INTRODUCTION: Our main objective was to investigate whether retinal neurodegeneration, estimated from lower thickness of inner retinal layers, was associated with incident all-cause dementia and Alzheimer’s disease (AD).

METHODS: We performed an individual participant data meta-analysis using unpublished data from four prospective cohort studies with a total of 69,955 participants (n = 1087 cases of incident all-cause dementia; n = 520 cases incident AD; follow-up time median [interquartile range] 11.3 [8.8–11.5] years).

RESULTS: General baseline characteristics of the study population were mean (standard deviation) age, 58.1 (8.8) years; 47% women. After adjustment, lower baseline macular retinal nerve fiber layer thickness was significantly associated with a 10% and 11% higher incidence of all-cause dementia and AD, respectively. Lower baseline macular ganglion cell-inner plexiform layer thickness was not significantly associated with these outcomes.

DISCUSSION: These findings suggest that retinal neurodegeneration precedes the onset of clinical dementia. Retinal imaging tools may be informative biomarkers for the study of the early pathophysiology of dementia.

KEYWORDS

BACKGROUND
There is an imperative for the development of novel methods for the study of the early pathophysiology of dementia. Currently available methods have important limitations. For example, limitations of magnetic resonance imaging and biochemical quantification of proteins in cerebrospinal fluid are that these methods are expensive, invasive, time consuming, and/or do not allow for direct quantification of neuronal structures.

The retina has been postulated to be a window to the brain and hence may provide opportunity for the study of neurodegeneration in the early pathophysiology of clinical dementia. Indeed, retinal neurodegenerative changes have been found to be associated with cognitive decline and lower brain volume. In the retina subtle neurodegenerative changes can be non-invasively, inexpensively, and rapidly assessed with optical coherence tomography (OCT; up to a semi-histological resolution). Such changes include thinning of inner retinal layers, that is, the macular retinal nerve fiber layer (mRNFL) and the macular ganglion cell inner plexiform layer (mGCIPL); and may be detectable before the onset of clinical dementia. Lower mRNFL thickness is presumed to reflect loss of retinal ganglion cell axons; and lower mGCIPL thickness is presumed to reflect loss of retinal ganglion cells (soma and dendrites).

At present there is a widely held belief that retinal imaging tools may be useful biomarkers for the study of the early pathobiology of dementia; however, there are few prospective population-based data available to support this belief. Indeed, only one population-based study has analyzed the association of the thickness of inner retinal layers with incident dementia (n < 90 cases). This study found that lower peripapillary RNFL thickness was significantly associated with a higher risk of incident dementia and Alzheimer’s disease (AD) and had directionally similar, though less strong, findings for mGCIPL thickness.

In view of the above, the aim of this study is to investigate in an individual patient data meta-analysis, using prospective population-based data from four cohorts, (1) whether retinal neurodegeneration, estimated from lower thickness of inner retinal layers, is associated with incident all-cause dementia and AD (primary outcomes); and vascular dementia and late-onset dementia (secondary outcomes); and (2) whether these associations differ with age, sex, or apolipoprotein E (APOE) genotype status.

METHODS

2.1 Study population and design

Prospective data from the following four observational, population-based cohort studies were used: The UK Biobank (n = 82,860; United Kingdom),7 The Tromsø Study (n = 10,180; Norway),8 The Maastricht...
2.2.1 Primary outcomes: All-cause dementia and AD

Data on primary outcomes were available in all cohorts. In The UK Biobank and The Tromsø studies, cases of incident dementia were identified via linkage to hospital episode statistics data (e.g., death registry and hospital inpatient records in the UK Biobank) and classified using the International Classification of Diseases, ninth and tenth revision (ICD-9 and ICD-10). In The Maastricht Study, potential cases of incident dementia were identified via hospital records. Medical data were checked by a geriatric specialist and dementia cases were diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. In The Alienor Study, potential cases of dementia were identified based on a neuropsychological battery. Those individuals who were identified as potential cases of dementia were referred to a neurologist for further diagnosis and classification of dementia according to the DSM-IV criteria. More details are presented in the Supporting Information.

2.2.2 Secondary outcomes: vascular dementia and late-onset dementia

Late-onset dementia was defined as the onset of dementia at an age ≥65 years. Data on vascular dementia were available in all cohorts except for The Tromsø Study. Data on late-onset dementia were available in all cohorts.

2.3 Retinal thickness indices

The thickness of inner retinal layers (i.e., mRNFL and mGCIPL) was assessed at the macula (peri-foveal) in both eyes with OCT. We calculated global mRNFL and mGCIPL thickness indices using data from both eyes (i.e., we calculated the mean thickness of both eyes), or, if data were only available for one eye, using data from that eye only. In The Alienor Study only, data on mRNFL and mIPL thickness were not presently available, hence, to be able to combine the data from all cohorts, we estimated mGCIPL thickness in The Alienor Study using mGCL thickness and reference data on the ratio between mGCL thickness and mIPL thickness (strongly correlated; \(\rho = 0.94 \)) from The Maastricht Study. More details, including on the assessment of OCT image quality, are provided in the Supporting Information.

In a subset of participants from The Tromsø Study (\(n = 3309 \) participants) OCT data were available at two moments in time (median [IQR] difference in time between OCT measurements was 7.7 [7.3, 8.0] years), allowing for the calculation of change in retinal thickness over time.

2.4 Assessment of covariables

The following covariables were assessed at baseline (a detailed description of the assessment of all variables per cohort is provided in the Supporting Information section).
2.4.1 | Variables for the main analyses

Sociodemographic variables included age (years), sex (male/female), and educational level (higher [college/university degree or other professional qualification], upper secondary [second/final stage of secondary education], lower secondary [first stage of secondary education], vocational [work-related practical qualifications], or other).

Key dementia risk factors included body mass index (BMI; kg/m²), diabetes (presence/absence), alcohol consumption (none, moderate, high), smoking (never, former, current), antihypertensive medication (presence/absence), systolic and diastolic (office) blood pressure (mm Hg), and APOE genotype status (categorized as ε2 [ε2/ε2 or ε2/ε3]; ε2/ε4; ε3/ε3; ε3/ε4 [ε3/ε4 or ε3/ε4]).

Eye variables were spherical equivalent (diopter) and other variables included time until death (only available in the UK Biobank, The Tromsø Study, and The Allenor Study).

2.4.2 | Variables for the additional analyses

Eye variables were the presence of any eye disease (age-related macular degeneration, glaucoma, retinopathy, cataract; presence/absence [in any eye]).

2.5 | Statistical analyses

We used Cox proportional hazards regression analyses to study the associations of baseline mRNFL and mGCIPL thickness with hazard of incident dementia (i.e., all-cause dementia; AD; vascular dementia; and late-onset dementia). We expressed associations per SD lower thickness (indicating higher levels of presumed neurodegeneration). Before we performed formal analyses, we checked whether proportional hazards assumption was not violated and whether associations were linear (both were the case; more details in the Supporting Information). We expressed results as hazard ratio (HR) with corresponding 95% confidence interval [CI]).

Follow-up time was calculated as the time between OCT measurement and censoring (the date of incident dementia, the date of death, or the last date at which data on dementia and death status were available). For analyses with individual types of dementia, we censored participants who developed other types of dementia than the type of dementia of interest.

We used the following models. In the crude model, we adjusted for cohort to account for differences in the assessment of variables between cohorts. In Model 1, we additionally adjusted for age, sex, educational level, and spherical equivalent, as these variables are key determinants of risk of dementia (age, sex, educational level [the latter is a proxy of social economic status] or retinal thickness [spherical equivalent can affect the assessment of retinal thickness]). In Model 2, we additionally adjusted for important risk factors for dementia that are also associated with retinal thickness (potential confounders), that is, BMI, diabetes (presence/absence), alcohol consumption (none [reference], moderate, high), smoking (never [reference], former, current), antihypertensive medication (with/without), and systolic blood pressure (continuous variable). We adjusted for covariates in Model 2 in a separate model as these factors are weaker determinants of dementia than the covariates entered in Model 1. We did not include APOE genotype status in the model because the association of APOE genotype status with retinal thickness remains largely unknown as few data are available on this association. Missing data on covariates were imputed using multiple imputation analysis (more details in the Supporting Information).

To assess whether the associations differed in strength by key demographic variables (age, sex, and educational level) or by APOE genotype status, we tested for interaction with these covariates. For APOE genotype status, we hypothesized that individuals with APOE ε4 versus APOE ε3 may be more susceptible to microvascular dysfunction, and therefore also may be more susceptible to the development of clinical dementia. To test for interaction, interaction terms were entered in the fully adjusted model (e.g., sex x mRNFL thickness).

2.6 | Additional analyses

We performed a range of additional analyses. First, we analyzed associations in individual cohorts. Second, we analyzed the association of change in retinal thickness over time with incident dementia. Third, we repeated analyses after exclusion of individuals with eye diseases. Fourth, we analyzed the association of APOE genotype status with retinal thickness. Fifth, we performed competing risk analyses to account for risk of death. Other analyses are reported in the Supporting Information.

Main analyses were performed using Statistical Package for Social Sciences version 28.0 (IBM SPSS, IBM Corp.). For all analyses (including interaction analyses) a P-value < 0.05 was considered statistically significant in two-sided tests.

3 | RESULTS

3.1 | Baseline retinal thickness and incident dementia

3.1.1 | Characteristics of the study population

Figure 1 shows the selection of participants for inclusion in analyses. The study population for mGCIPL thickness consisted of N = 69,955 participants (N = 1087 and n = 520 cases of incident all-cause dementia and AD, respectively). The study population for mRNFL thickness...
FIGURE 1 Selection of the study population with data on baseline retinal thickness. Data on covariables required for models 1 and 2 was missing for ≈11% of the study populations. This data was imputed. Abbreviations: mRNFL, macular retinal nerve fiber layer thickness; mGCIPL, macular ganglion cell-inner plexiform layer thickness; OCT, optical coherence tomography.

consisted of N = 69,566 participants (N = 985 and n = 450 cases of incident all-cause dementia and AD, respectively). The median follow-up time for both study populations was 11.3 years (IQR 8.8–11.5 years).

General characteristics of the participants of the mGCIPL study population according to incident dementia status are provided in Table 1 and Table S1 in Supporting Information. Table S2 in Supporting Information shows general characteristics of the participants of the mRNFL study population. Overall, participants with incident dementia were older and had a more adverse dementia risk profile (e.g., higher blood pressure at baseline) compared to individuals without incident dementia. Characteristics of the participants included in the analyses were highly comparable to those of participants excluded from analyses due to missing data (Table S3 in Supporting Information).

3.1.2 mRNFL

After full adjustment (Model 2), lower baseline mRNFL thickness was significantly associated with a higher incidence of all-cause dementia and AD (per SD, hazard risk [95% CI], 1.10 [1.02; 1.17] and 1.11 [1.00; 1.23], respectively; Table 2). Figure 2 shows the Kaplan–Meier curve.

3.2 Tests for interaction

Age, sex, and APOE genotype status did not modify any of the above associations. Educational level did not consistently modify associations. P-values for interaction are presented in Table S4 in Supporting Information.

3.3 Analyses with secondary outcomes

Figure 1 shows the selection of participants for inclusion in analyses. The study population for late-onset dementia was the same as for all-cause dementia and AD. For vascular dementia the study...
Table 1: General characteristics of the study population for baseline mGCIPL thickness.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All-cause dementia</th>
<th>Overall, N = 69,955[^a]</th>
<th>Without, N = 68,868</th>
<th>With, N = 1087</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean ± SD</td>
<td></td>
<td>58.11 ± 8.82</td>
<td>57.93 ± 8.71</td>
<td>69.48 ± 8.16</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>N = 69,955</td>
<td>36,889 (53)</td>
<td>36,314 (53)</td>
<td>575 (53)</td>
</tr>
<tr>
<td>Men</td>
<td>N = 69,955</td>
<td>33,066 (47)</td>
<td>32,554 (47)</td>
<td>512 (47)</td>
</tr>
<tr>
<td>Educational status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher</td>
<td>N = 69,221</td>
<td>33,644 (49)</td>
<td>33,344 (49)</td>
<td>300 (28)</td>
</tr>
<tr>
<td>Upper secondary</td>
<td>N = 69,726</td>
<td>5750 (8.3)</td>
<td>5687 (8.3)</td>
<td>63 (5.9)</td>
</tr>
<tr>
<td>Lower secondary</td>
<td>N = 69,736</td>
<td>13,903 (20)</td>
<td>13,744 (20)</td>
<td>159 (15)</td>
</tr>
<tr>
<td>Vocational</td>
<td>N = 69,726</td>
<td>5628 (8.1)</td>
<td>5485 (8.0)</td>
<td>143 (13)</td>
</tr>
<tr>
<td>Other</td>
<td>N = 69,955</td>
<td>10,296 (15)</td>
<td>9894 (15)</td>
<td>402 (38)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without diabetes</td>
<td>N = 69,726</td>
<td>65,016 (93)</td>
<td>64,087 (93)</td>
<td>929 (86)</td>
</tr>
<tr>
<td>With diabetes</td>
<td>N = 69,955</td>
<td>4710 (6.8)</td>
<td>4564 (6.6)</td>
<td>146 (14)</td>
</tr>
<tr>
<td>Spherical equivalent (dpt), median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without antihypertensive medication at baseline</td>
<td>N = 69,955</td>
<td>0.22 (−0.83–1.16)</td>
<td>0.22 (−0.84–1.15)</td>
<td>0.81 (−0.26–1.93)</td>
</tr>
<tr>
<td>With antihypertensive medication at baseline</td>
<td>N = 69,955</td>
<td>53.366 (76)</td>
<td>52.770 (77)</td>
<td>596 (55)</td>
</tr>
<tr>
<td>Office systolic blood pressure (mmHg), mean ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body-mass index (kg/m²), mean ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol consumption, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>N = 63,892</td>
<td>11,271 (18)</td>
<td>10,907 (17)</td>
<td>364 (37)</td>
</tr>
<tr>
<td>Moderate</td>
<td>N = 69,955</td>
<td>29,665 (46)</td>
<td>29,239 (46)</td>
<td>426 (43)</td>
</tr>
<tr>
<td>High</td>
<td>N = 69,955</td>
<td>22,956 (36)</td>
<td>22,758 (36)</td>
<td>198 (20)</td>
</tr>
<tr>
<td>Smoking status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>N = 69,712</td>
<td>36,211 (52)</td>
<td>35,721 (52)</td>
<td>490 (45)</td>
</tr>
<tr>
<td>Former</td>
<td>N = 69,955</td>
<td>26,258 (38)</td>
<td>25,792 (38)</td>
<td>466 (43)</td>
</tr>
<tr>
<td>Current</td>
<td>N = 69,955</td>
<td>7243 (10)</td>
<td>7122 (10)</td>
<td>121 (11)</td>
</tr>
<tr>
<td>APOE genotype status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε²/ε², n (%)</td>
<td>N = 55,615</td>
<td>352 (0.6)</td>
<td>349 (0.6)</td>
<td>3 (0.5)</td>
</tr>
<tr>
<td>ε²/ε³, n (%)</td>
<td>N = 55,615</td>
<td>6711 (12)</td>
<td>6658 (12)</td>
<td>53 (8.1)</td>
</tr>
<tr>
<td>ε²/ε⁴, n (%)</td>
<td>N = 55,615</td>
<td>1398 (2.5)</td>
<td>1381 (2.5)</td>
<td>17 (2.6)</td>
</tr>
<tr>
<td>ε³/ε³, n (%)</td>
<td>N = 55,615</td>
<td>32,840 (59)</td>
<td>32,561 (59)</td>
<td>279 (43)</td>
</tr>
<tr>
<td>ε³/ε⁴, n (%)</td>
<td>N = 55,615</td>
<td>13,011 (23)</td>
<td>12,770 (23)</td>
<td>241 (37)</td>
</tr>
<tr>
<td>ε⁴/ε⁴, n (%)</td>
<td>N = 55,615</td>
<td>1300 (2.3)</td>
<td>1238 (2.3)</td>
<td>62 (9.5)</td>
</tr>
<tr>
<td>Baseline retinal thickness indices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNFL thickness^* (μm), mean ± SD</td>
<td>N = 69,566</td>
<td>29.27 ± 4.90</td>
<td>29.26 ± 4.90</td>
<td>29.36 ± 4.85</td>
</tr>
<tr>
<td>mGCIPL thickness (μm), mean ± SD</td>
<td>N = 69,955</td>
<td>74.55 ± 6.95</td>
<td>74.56 ± 6.91</td>
<td>73.89 ± 9.16</td>
</tr>
</tbody>
</table>

Types of dementia

<table>
<thead>
<tr>
<th>Disease</th>
<th>N = 69,955</th>
<th>520 (0.7)</th>
<th>0 (0)</th>
<th>520 (48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer’s disease</td>
<td>N = 60,805</td>
<td>109 (0.2)</td>
<td>0 (0)</td>
<td>109 (16)</td>
</tr>
<tr>
<td>Vascular dementia</td>
<td>N = 60,805</td>
<td>14 (< 0.1)</td>
<td>0 (0)</td>
<td>14 (2.1)</td>
</tr>
<tr>
<td>Frontotemporal dementia</td>
<td>N = 69,955</td>
<td>70 (0.1)</td>
<td>0 (0)</td>
<td>70 (6)</td>
</tr>
<tr>
<td>Early-onset dementia</td>
<td>N = 69,955</td>
<td>1017 (1.5)</td>
<td>0 (0)</td>
<td>1017 (94)</td>
</tr>
</tbody>
</table>

Abbreviations: APOE, apolipoprotein E; IQR, interquartile range; mGCIPL, macular ganglion cell-inner plexiform layer; mRNFL, macular retinal nerve fiber layer; SD, standard deviation.

[^a]: Mean ± SD; n (%); median (IQR).

[^*]: Shown for the population with complete data on mRNFL thickness (n = 69,566).
FIGURE 2 Kaplan–Meier plots for all-cause incident dementia according to mRNFL thickness and mGCIPL thickness. Figure S2 in Supporting Information shows the hazard of incident all-cause dementia according to median thickness (thin [in red]; lower than median thickness) or thick [in blue]; median thickness or larger than median retinal thickness). Data are shown for the study populations with complete data on mRNFL thickness (2.1) or mGCIPL thickness (2.2) and incident all-cause dementia. Abbreviations: mRNFL, macular retinal nerve fiber layer; mGCIPL, macular ganglion cell-inner plexiform layer.

TABLE 2 Associations of baseline retinal thickness indices with incident dementia.

<table>
<thead>
<tr>
<th>Incident dementia</th>
<th>All-cause dementia</th>
<th>Alzheimer’s disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>n = 69,566 (985 cases)</td>
<td>n = 69,566 (450 cases)</td>
</tr>
<tr>
<td>mRNFL, per SD lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>1.29 (1.20 to 1.40)</td>
<td>1.31 (1.17 to 1.46)</td>
</tr>
<tr>
<td>1</td>
<td>1.10 (1.03 to 1.18)</td>
<td>1.11 (1.004 to 1.23)</td>
</tr>
<tr>
<td>2</td>
<td>1.10 (1.02 to 1.17)</td>
<td>1.11 (1.001 to 1.23)</td>
</tr>
<tr>
<td>All cause dementia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mGCIPL, per SD lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>1.30 (1.25 to 1.36)</td>
<td>1.24 (1.17 to 1.32)</td>
</tr>
<tr>
<td>1</td>
<td>1.04 (0.99 to 1.10)</td>
<td>1.01 (0.94 to 1.09)</td>
</tr>
<tr>
<td>2</td>
<td>1.04 (0.99 to 1.10)</td>
<td>1.01 (0.94 to 1.09)</td>
</tr>
</tbody>
</table>

Notes: Variables entered in models: Crude: cohort; model 1: Crude + age, sex, educational level, and spherical equivalent; model 2: model 1 + BMI, diabetes, alcohol consumption, smoking status, antihypertensive medication, and systolic blood pressure. Bold indicates P-value < 0.05. Abbreviations: BMI, body mass index; CI, confidence interval; HR, hazard ratio; mGCIPL, macular ganglion cell-inner plexiform layer; mRNFL, macular retinal nerve fiber layer; SD, standard deviation.

populations for mGCIPL thickness consisted of N = 60,085 participants (N = 109) and for mRNFL thickness the study population consisted of N = 59,696 participants (N = 97 cases). The median follow-up time for both study populations was 11.3 years (IQR 8.8–11.5 years).

3.3.1 | mRNFL

After full adjustment (Model 2), lower baseline mRNFL thickness was significantly associated with a higher incidence of late-onset dementia (1.08 [1.01; 1.16]), and was numerically identically, though not statistically significantly, associated with a higher incidence of vascular dementia (1.08 [0.85; 1.36]; Table 3).

3.3.2 | mGCIPL

After full adjustment (Model 2), lower baseline mGCIPL thickness was not significantly associated with vascular dementia (1.17 [0.98; 1.40]) or late-onset dementia (1.02 [0.97; 1.08]; Table 3).

3.4 | Additional analyses

We had quantitatively similar results in a range of additional analyses (Tables S5–S13 in Supporting Information). Here we highlight main findings, all results of additional analyses reported in the Supporting Information section. First, we found that associations did not statistically differ according to cohort (P interaction-value for cohort > 0.05). Second, greater change in mRNFL and mGCIPL thickness over time (i.e., retinal thinning) was significantly associated with a higher risk of
Findings of the present study contribute important novel data to the existing literature. Indeed, this is the largest study to date on the prospective association of retinal thickness with incident dementia (providing considerably more data than the existing literature [>70,000 participants and >1000 cases of incident dementia versus \(n = 3289 \) participants; 86 cases of incident dementia]).\(^5\) Moreover, it is the first study to (1) investigate the associations of retinal thickness with other types of dementia than AD, (2) investigate the association of change in retinal thickness over time with incident dementia, and (3) investigate whether associations of retinal thickness with incident dementia differ according to \(\text{APOE} \) genotype status.

Lower mRNFL thickness was approximately twice as strongly associated with incident all-cause dementia and AD than lower mGCIPL thickness. Possibly this may be because lower mRNFL thickness reflects loss of synapses whereas lower mGCIPL thickness (mainly) reflects loss of neuronal gray matter atrophy; and synaptic deterioration precedes gray matter atrophy.\(^5\) Indeed, consistent with this concept, synaptic loss is a stronger predictor of cognitive decline and dementia than gray matter atrophy.\(^22,23\)

We hypothesized that the associations of mRNFL thickness and mGCIPL thickness with incident dementia may be stronger in individuals with one or two \(\text{APOE} \) \(\varepsilon 4 \) alleles because the \(\text{APOE} \) \(\varepsilon 4 \) genotype is associated with cerebral vascular disease.\(^20\) However, we did not find evidence for such an interaction, possibly because it may be difficult to show such an interaction. \(\text{APOE} \) \(\varepsilon 4 \) genotype status can predispose to an increased risk for dementia via other mechanisms in which \(\text{APOE} \) genotype is not an effect modifier.\(^20\) For example, \(\text{APOE} \) \(\varepsilon 4 \) genotype can directly predispose to neurodegeneration because the \(\text{APOE} \) \(\varepsilon 4 \) genotype is associated with an impaired removal of neurotoxins such as amyloid beta in neuronal tissue.\(^20\)

This study has many strengths. First, the use of data from multiple large European, population-based cohort studies enables us to draw conclusions that are valid in the general population and reduces the chance that our results are affected by selection bias.\(^24\) Second, due to the prospective nature of the data, we could account for temporality and, thus, can conclude that mRNFL and mGCIPL thinning precedes incident clinical dementia.\(^24\) Third, we adjusted for a large number of potential confounders, which reduces the chance that unmeasured confounding spuriously affects the strength of associations under study (i.e., confounding bias).\(^24\) Fourth, many variables included in this study were assessed in a standardized manner with state-of-the-art methods (e.g., mRNFL and mGCIPL thickness), which reduces the chance that measurement error affects associations under study (i.e., information bias).\(^24\)

This study also has certain limitations. First, in most cohorts the cases of incident dementia were identified from medical records, which is a less precise method to determine the diagnosis of dementia than via neuropsychological tests.\(^25\) This may have resulted in misclassification, which may have reduced statistical power to detect an association.\(^24\) Individuals with earlier (subclinical) stages of dementia may not have been detected from hospital records. In addition, the false positive classification of individuals as dementia cases may also have resulted in an underestimation of the strength of the
associations under study. Second, we had relatively low numbers of cases for other types of dementia than AD and were not able to investigate all subtypes of dementia (e.g., Lewy body dementia and Parkinson’s disease dementia). Third, there were relatively few cases of incident dementia among participants with the APOE ε2 genotype (<50 cases); hence there was limited statistical power to detect whether the associations under study differed between participants with APOE ε2 versus APOE ε3 genotype. Fourth, even though we took an extensive set of confounders into account, we cannot fully exclude unmeasured confounding. For example, we did not account for other genetic factors than APOE genotype status in the analyses. Last, the study population mainly consisted of White individuals; whether findings are generalizable to populations with other ethnicities requires further study.

5 | CONCLUSION

The present individual participant data meta-analysis found that retinal neurodegeneration, estimated from lower inner retinal layer thickness, was associated with a 5% to 10% higher risk of incident all-cause dementia and AD. These findings support the concept that retinal neurodegeneration precedes the onset of clinical dementia and that retinal imaging tools may be informative biomarkers for the study of the early pathophysiology of dementia.

AUTHOR CONTRIBUTIONS

Frank C. T. van der Heide contributed to conception and design, participated in acquisition of data, analyzed and interpreted data, coordinated the acquisition of data, drafted the manuscript (with Coen D. A. Stehouwer [Netherlands], Anthony Khawaja [UK], Geir Bertelsen [Norway], and Catherine Helmer [France]), revised the manuscript critically for important intellectual content, and provided final approval of the version to be published. Frank C. T. van der Heide also is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Tos T. M. Berendschot, Thomas J. Littlejohns, Elżbieta Kuźma, Robert Luben, Therese von Hanno, Sara C. L. Rebouçãs, Leslie Grasset, Cécile Delcourt, Carroll A. Webers, Anthony Khajawa, Martien C. J. M. van Dongen, Simone J. P. M. Eussen, Casper Schalkwijk, Henrik Schirmer, Sebastian Koehler, Miranda Schram, Gabriella A. M. Blokland, David E. J. Linden, Praveen J. Patel, Paul J. Foster, Bente Johnsen, and Anke Wesselius, contributed to conception and design, revised the manuscript critically for important intellectual content, and provided final approval of the version to be published. The E3 consortium and the UK Biobank Eye & Vision Consortium contributed to data collection and combining data. All authors confirm that they had full access to all the data in the study and accept responsibility to submit for publication.

ACKNOWLEDGMENTS

The authors would like to acknowledge the ZIO foundation (Vereniging Regionale HuisartsenZorg Heuvelland) for their contribution to the Maastricht Study. The researchers are indebted to all participants for their willingness to participate in the study. The UK Biobank: This research has been conducted using the UK Biobank Resource under application number 36741. Elżbieta Kuźma was supported by the Nico- laus and Margit Langbehn Foundation. The Tromsø Study: The Tromsø Study was funded by UiT The Arctic University of Norway, The North Norwegian Regional Health Authority, The Norwegian Ministry of Health and Care Services, The University Hospital of North Norway, Troms County, Jon S. Larsens Foundation, HelsetNord (the Regional Health Authorities in North Norway), and the Norwegian Foundation for Glaucoma Research. The Maastricht Study: This study was supported by the European Regional Development Fund via OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs (grant 310.041), Stichting De Weijerhorst (Maastricht, the Netherlands), the Pearl String Initiative Diabetes (Amsterdam, the Netherlands), the Cardiovascular Center (CVC, Maastricht, the Netherlands), CARIM School for Cardiovascular Diseases (Maastricht, the Netherlands), CAPHRI School for Public Health and Primary Care (Maastricht, the Netherlands), NUTRIM School for Nutrition and Translational Research in Metabolism (Maastricht, the Netherlands), Stichting Annadal (MaaS- tricht, the Netherlands), Health Foundation Limburg (Maastricht, the Netherlands), Perimed (Järfalla, Sweden), and by unrestricted grants from Janssen-Cilag B.V. (Tilburg, the Netherlands), Novo Nordisk Farma B.V. (Alphen aan den Rijn, the Netherlands), and Sanofi-Aventis Netherlands B.V. (Gouda, the Netherlands). In addition, Frank van der Heide was supported by a research grant from Alzheimer Nederland. The Alienor Study: The 3C Study is carried out under a partnership agreement between the Institut National de la Santé et de la Recherche Médicale (INSERM), Victor-Segalen Bordeaux-2 University, and Sanofi-Aventis. The Fondation pour la Recherche Médicale supported the preparation and initiation of the study. The study was also supported by the Caisse Nationale Maladie des Travailleurs Salarisés; the Direction Générale de la Santé; MGÉN; the Institut de la Longévité; the Agence Nationale de la Recherche ANR PNRA 2006 (0601-01) and Longvie 2007 (LVIE-003-01); the Agence Française de Sécurité Sanitaire des Produits de Santé; the Regional Governments of Aquitaine, Bourgogne, and Languedoc-Roussillon; the Ministry of Research-INSERM Programme Cohorts and collection of biological material; the Fondation Plan Alzheimer (FCS 2009-2012); the Caisse Nationale de Solidarité pour l’Autonomie (CNSA); Novartis; and the Fondation de France (Allocation Postdoctorale n° engagement 00089836). The ALIENOR study was supported by Théa Pharma, Fondation Voir et Entendre, University of Bordeaux, Agence Nationale de la Recherche (ANR 2010-PRSP-011 VISA), CFSR Recherche (Club Francophone des Spécialistes de la Rétine), CNSA (Caisse Nationale pour la Solidarité et l’Autonomie), and the French Ministry of Health (PHRC, 2012, PHRC12_157 ECLAIR).

CONFLICT OF INTEREST STATEMENT

A.P.K. has acted as a consultant to Abbvie, Aerie, Google Health, Novartis, Reichert, Santen, and Thea. For all other authors, no potential conflicts of interest relevant to this article were reported. Author disclosures are available in the Supporting Information 2.
DATA AVAILABILITY STATEMENT

Data are available for any researcher who meets the criteria for access to confidential data; the corresponding author may be contacted to request data.

CONSENT STATEMENT

All human subjects provided informed consent.

REFERENCES

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: van der Heide FCT, Khawaja A, Berendschot TTJM, et al. Associations of inner retinal layers with risk of incident dementia: An individual participant data analysis of four prospective cohort studies. Alzheimers Dement. 2023;1-10. https://doi.org/10.1002/alz.13167

APPENDIX

The Maastricht Study consortium:

Carroll A.B. Webers, MD, PhD 2; Abraham Kroon, MD, PhD 1, 2; Carla van der Kallen, PhD 1, 2; Martien C.J.M. van Dongen, PhD 1, 2; Simone J.P.M. Eussen, PhD 1, 2; Casper Schalkwijk, PhD 1, 2; Hans Bosma, PhD 1, 2; Seb Koehler, PhD 1, 2; Miranda T. Schram, PhD 1, 2; Gabriëlla A.M. Blokland, PhD 1, 2; David E.J. Linden, PhD 1, 2; Anke Wesselius, PhD 1, 2.;