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ABSTRACT
Aim  To examine the associations of air pollution with 
both self-reported age-related macular degeneration 
(AMD), and in vivo measures of retinal sublayer 
thicknesses.
Methods  We included 115 954 UK Biobank 
participants aged 40–69 years old in this cross-
sectional study. Ambient air pollution measures included 
particulate matter, nitrogen dioxide (NO2) and nitrogen 
oxides (NOx). Participants with self-reported ocular 
conditions, high refractive error (< −6 or > +6 diopters) 
and poor spectral-domain optical coherence tomography 
(SD-OCT) image were excluded. Self-reported AMD was 
used to identify overt disease. SD-OCT imaging derived 
photoreceptor sublayer thickness and retinal pigment 
epithelium (RPE) layer thickness were used as structural 
biomarkers of AMD for 52 602 participants. We examined 
the associations of ambient air pollution with self-
reported AMD and both photoreceptor sublayers and 
RPE layer thicknesses.
Results  After adjusting for covariates, people who 
were exposed to higher fine ambient particulate 
matter with an aerodynamic diameter <2.5 µm (PM2.5, 
per IQR increase) had higher odds of self-reported 
AMD (OR=1.08, p=0.036), thinner photoreceptor 
synaptic region (β=−0.16 µm, p=2.0 × 10−5), thicker 
photoreceptor inner segment layer (β=0.04 µm, 
p=0.001) and thinner RPE (β=−0.13 µm, p=0.002). 
Higher levels of PM2.5 absorbance and NO2 were 
associated with thicker photoreceptor inner and outer 
segment layers, and a thinner RPE layer. Higher levels of 
PM10 (PM with an aerodynamic diameter <10 µm) was 
associated with thicker photoreceptor outer segment 
and thinner RPE, while higher exposure to NOx was 
associated with thinner photoreceptor synaptic region.
Conclusion  Greater exposure to PM2.5 was associated 
with self-reported AMD, while PM2.5, PM2.5 absorbance, 
PM10, NO2 and NOx were all associated with differences 
in retinal layer thickness.

INTRODUCTION
Age-related macular degeneration (AMD) is the 
leading cause of irreversible blindness in adults 50 
years and above in high-income countries.1 Dry 
AMD is characterised by progressive dysfunction 

of the retinal pigment epithelium (RPE), photo-
receptor loss and retinal degeneration.2 By 2020, 
the global projected number of people with AMD 
is approximately 200 million, increasing to nearly 
300 million by 2040.3 Well-known risk factors 
include older age, smoking and genetic factors.1 
A constellation of adverse factors (both risk geno-
types, smoking and body mass index (BMI) ≥25) 
together increases the risk 19-fold.4 As smoking 
tobacco is a risk factor, it is plausible that ambient 
air pollution may also be a modifiable risk factor.

Air pollution is one of the world’s most important 
environmental health risks. It is associated with 
increased mortality and morbidity.5 Exposure to 
air pollution is associated with pulmonary and 
cardiovascular disease6 and eye diseases including 
glaucoma7 and AMD.8 The mechanisms of air 
pollution-induced health effects may likely involve 
oxidative stress and inflammation.9 The retina is 
one of the highest oxygen-consuming tissues in the 
human body and resides in an environment that 
is primed for the generation of reactive oxygen 
species and resultant oxidative damage.10 Oxida-
tive damage increases with age, resulting in retinal 
dysfunction and cell loss. Rapid, non-invasive 
optical coherence tomography (OCT) imaging of 
the retina is now commonly used by community 
opticians and hospital eye clinics and to assess 
retinal structural changes associated with AMD, 
and to guide its management.11

If air pollution has an adverse effect on AMD 
risk, this may offer a new range of interventions for 
controlling this important condition. We examined 
data from UK Biobank (UKBB), a large community-
based cohort study. The aim of our study was to 
evaluate the relationship between ambient air pollu-
tion, AMD status and OCT imaging derived struc-
tural features of the disease: photoreceptor sublayer 
and RPE layer thickness.

METHODS
Study population
UKBB is a very large community-based cohort of 
502 656 UK residents registered with the National 
Health Service and aged 40–69 years at enrolment. 
Baseline examinations were carried out between 
2006 and 2010 at 22 study assessment centres. The 
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North West Multi-centre Research Ethics Committee approved 
the study in accordance with the principles of the Declaration of 
Helsinki. The overall study protocol (http://www.​ukbiobank.​ac.​
uk/​resources/) and protocols for individual tests (http://​biobank.​
ctsu.​ox.​ac.​uk/​crystal/​docs.​cgi) are available online. Participants 
answered a wide-ranging touch-screen questionnaire covering 
demographic, socioeconomic, lifestyle, systemic and ocular 
diseases information. Definition of hypertension was based 
on self-reported data. Physical measures included height and 
weight. BMI was defined as weight divided by height squared.

Ocular assessment
Ocular assessment was introduced as an enhancement in 2009 
for six assessment centres which are spread across the UK.12 
Habitual visual acuity (VA) was measured using a logarithm of the 
minimum angle of resolution (LogMAR) chart (Precision Vision, 
LaSalle, Illinois, USA) on a computer screen under standard illu-
mination.12 13 Refractive error was measured using an autore-
fractor (Tomey RC 5000, Nagoya, Japan).14 High-resolution 
OCT imaging was performed using the Topcon 3D OCT 1000 
Mk2 (Topcon Inc, Oakland, New Jersey, USA) in a dark room, 
without pupillary dilation using the 3D macular volume scan 
(scan settings: 512 horizontal A scans per B scan; 128 B scans 
in a 6×6 mm raster pattern). The Topcon Advanced Boundary 
Segmentation (TABS) Algorithm (V.1.6.1.1)15 was used to detect 
retinal layer boundaries and measure the thickness of the RPE16 
and photoreceptor sublayers (online supplemental figure 1). The 
TABS segmentation algorithm has been validated previously 
showing a high degree of precision and reproducibility compared 
with manual segmentation methods.15 Strict quality control was 
implemented to exclude images of poor quality as described in 
detail previously.17 OCT scans with image quality score (signal 
strength) <45 were excluded. Several segmentation indicators 
were calculated to identify poor scan quality or segmentation 
failures. Participants with the poorest 20% of images for each of 
these indicators were also excluded. These indicators included 
an inner limiting membrane (ILM) indicator, a validity count 
and motion indicators. The ILM indicator was a measure of 
the minimum localised edge strength around the ILM boundary 
across the entire scan. It is useful for identifying blinks, scans 
that contain regions of severe signal fading and segmentation 
errors. The validity count indicator is used to identify scans with 
a significant degree of clipping in the OCT scan’s z-axis dimen-
sion. The motion indicators use both the nerve fibre layer and 
the full retinal thicknesses, from which Pearson correlations and 
absolute differences between the thickness data from each set of 
consecutive B-scans are calculated. The lowest correlation and 
the highest absolute difference in a scan serve as the resulting 
indicator scores and identify blinks, eye motion artefacts and 
segmentation failures. The image quality score and the afore-
mentioned indicators usually are highly correlated.18

Definition of AMD status
Definition of AMD status was based on self-reported data. AMD 
status was determined as those who selected ‘macular degener-
ation’ from a predefined list of eye disorders to the question 
‘Has a doctor ever told you that you have any of the following 
problems with your eyes?’ We also carried out a validation of 
self-reported AMD status by carrying out masked grading of 
the retinal OCT and fundus images for features of AMD based 
on the Beckman AMD classification on a random subset of age-
matched participants.19

Estimates of air pollution
The air pollution estimates were provided by the Small Area 
Health Statistics Unit (http://www.​sahsu.​org/) as part of the 
BioSHaRE-EU Environmental Determinants of Health Project 
(http://www.​bioshare.​eu/), and were linked centrally to the 
assessment data by UKBB analysts (http://​biobank.​ctsu.​ox.​ac.​
uk/​crystal/​docs/​EnviroExposEst.​pdf). Detailed estimates of 
air pollution parameters have been published.20 The annual 
average concentration of PM2.5 (aerodynamic diameter of less 
than 2.5 µm), PMcoarse (aerodynamic diameter between 2.5 and 
10 µm), PM10 (aerodynamic diameter of less than 10 µm), PM2.5 
absorbance (a measurement of the blackness of PM2.5 filter—a 
proxy for elemental or black carbon), nitrogen dioxide (NO2) 
and nitrogen oxides (NOx) were calculated centrally by the 
UKBB using a land use regression model developed by the 
European Study of Cohorts for Air Pollution Effects (ESCAPE) 
project (http://www.​escapeproject.​eu/).21 By using the predictor 
variables obtained from the Geographic Information System 
such as traffic, land use and topography, the land use regression 
models calculate the spatial variation of annual average air pollu-
tion concentration at participants’ residential addresses given at 
baseline visit. NO2 annual concentration data were available for 
4 years (2005, 2006, 2007 and 2010), while PM10 data were 
available for 2007 and 2010. We averaged the values to obtain 
the mean estimate. All other particulate matter and nitrogen 
pollutants had the exposure data for a single year (2010).

Inclusion and exclusion criteria
A uniform set of exclusion criteria was applied in the analysis of 
AMD status, photoreceptor layer and RPE thickness (figure 1). 
We excluded data from: (1) participants who withdrew consent; 

Figure 1  Flowchart of participants included in the study. AMD, 
age-related macular degeneration; BMI, body mass index; D, Diopters; 
NO2, nitrogen dioxide, NOx, nitrogen oxide; OCT, optical coherence 
tomography; PM2.5, particulate matter (aerodynamic diameter of less 
than 2.5 µm); PM2.5 absorbance, particulate matter (a measurement of 
the blackness of PM2.5 filter—a proxy for elemental or black carbon); 
PMcoarse, particulate matter (aerodynamic diameter between 2.5 and 
10 µm); PM10, particulate matter (aerodynamic diameter of less than 
10 µm); RPE, retinal pigment epithelium; SER, spherical equivalent 
refraction.
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or (2) had self-reported diabetes-related eye disease, eye injury 
resulting in vision loss or other serious eye conditions; high 
refractive error (< −6 diopters [D] or > +6D) or (3) partici-
pants who had poor OCT image scans using TABS software.16 22 
These participants were excluded because of the well-recognised 
impact these factors have on retinal layer thickness.23

Statistical analysis
The present analysis was based on cross-sectional data collected 
at one point in time. For this analysis, if both eyes of a patient 
were eligible for inclusion in the analysis, one eye was randomly 
selected using STATA software (V.13, StataCorp LP, College 
Station, Texas, USA). We examined the baseline characteristics 
of participants included for each specific outcome (self-reported 
AMD and retinal layers). Descriptive statistics for continuous 
variables are presented as mean (SD), whereas categorical vari-
ables are presented as number (percentage). We examined the 
associations of each air pollutant (independent variables) with 
self-reported AMD (dependent variable) using logistic multivari-
able regression models, adjusted for age, sex, race, Townsend 
deprivation index, BMI, smoking status and refractive error. 
The associations of air pollutants with photoreceptor sublayers 
and RPE thicknesses (dependent variables) were adjusted for 
the same variables, using linear multivariable regression models. 
The effect estimates represent the change in self-reported AMD 
and retinal layers variables per IQR increment in air pollution. 
Statistical significance was set at p<0.05 for the outcomes 
self-reported AMD and RPE thickness. When photoreceptor 
sublayer thickness was analysed as an outcome, statistical signif-
icance was set at p<0.002 after Bonferroni correction as we 
examined six different types of air pollutants with four distinct 
photoreceptor-related layers. In sensitivity analysis, we exam-
ined the associations of air pollutants with visually significant 
self-reported AMD. Visually significant self-reported AMD was 
defined as self-reported AMD participants with VA worse than 
LogMAR 0.3 (equivalent to Snellen 20/40), while non-visually 
significant self-reported AMD was defined as those with VA of 
LogMAR 0.3 or better.

RESULTS
Of the 133 964 participants who completed ocular assessment, 
24 participants withdrew their consent. Of the 133 940, we 
excluded 13 329 participants according to the exclusion criteria 
(figure  1), leaving data on 120 611 participants. There were 
complete data (age, sex, race, Townsend deprivation index, 
BMI, smoking status, refractive error, self-reported AMD and 
air pollution measures) for 115 954 participants. Of the 115 
954, there was complete OCT imaging data on retinal layers for 
68 088 participants. We excluded 15 486 participants according 
to the exclusion criteria for OCT. Hence, 52 062 participants 
were included in the analysis for examining RPE and photo-
receptor layer thickness. This large number of exclusions for 
retinal layers was because of a later start for OCT imaging in 
UKBB, meaning a smaller number of people were scanned.

The characteristics of participants with data on self-reported 
AMD and a subgroup with data on retinal layer are shown in 
table 1. Both groups had similar sociodemographic and clinical 
characteristics. Compared with participants with self-reported 
AMD, those without self-reported AMD were more likely non-
white (9.1% vs 7.0%; p=0.01), younger (56.8 years vs 61.6 
years), more likely male (46.0% vs 40.9%), more likely to come 
from a more deprived area (less negative Townsend deprivation 
index, −1.1 vs −1.4) and more likely to be smokers (9.7% vs 

7.6%, all p<0.001, online supplemental table 1). The distribu-
tion of ambient air pollution exposure of participants with data 
on self-reported AMD and a subgroup with retinal layer data 
are shown in online supplemental table 2). The mean (SD) of 
the various retinal layers are as follows: total length of photo-
receptor (142.1 µm (8.2 µm)), photoreceptor synaptic region 
(80.4 µm (6.6 µm)), photoreceptor inner segment (23.8 µm 
(2.0 µm)), photoreceptor outer segment (37.9 µm (4.3 µm)) 
and RPE (25.6 µm (7.2 µm)). Of the 115 954 participants, 1286 
(1.1%) were diagnosed with AMD. Masked grading of OCT 
and retinal fundus images from 119 participants (60 with self-
reported AMD and 59 without self-reported AMD) showed 
that 75% of those with self-reported AMD had OCT features of 
AMD while only 12% of those without self-reported AMD had 
OCT features of AMD.

Participants exposed to higher levels of PM2.5 concentration 
were 8% more likely to have self-reported AMD (OR 1.08, 
95% CI 1.01 to 1.16; p=0.036, per IQR increase, table  2). 
Following Bonferroni correction, higher levels of PM2.5 and 
NOx were associated with thinner photoreceptor synaptic region 
(table 3). In contrast, per IQR increase in PM2.5, PM2.5 absor-
bance and NO2 were associated with a thicker photoreceptor 
inner segment layer. Exposure to higher levels of PM2.5 absor-
bance, PM10 and NO2 were associated with a thicker photore-
ceptor outer segment layer (table  3). Higher concentration of 
PM2.5, PM2.5 absorbance, PM10 and NO2 were associated with 
a thinner RPE layer (table  4). In addition, we examined the 
association of smoking status with self-reported AMD. Among 
participants with self-reported AMD, 510 (39.7%)/1286 and 
101 (7.9%)/1286 were previous and current smokers, respec-
tively. After adjusting for age, sex, race, Townsend deprivation 

Table 1  Demographic, systemic and ocular characteristics of 
participants with availability of data on self-reported AMD and retinal 
layers

Participants with data 
on self-reported AMD 
(n=115 954)

Participants 
with data on 
retinal layers 
(n=52 602)

Sociodemographic factors

Age 56.8 (8.0) 56.4 (8.1)

Sex

 � Men 53 218 (46%) 24 753 (47%)

 � Women 62 736 (54%) 27 849 (53%)

Race

 � White 105 465 (91%) 48 475 (92%)

 � Non-white 10 489 (9%) 4127 (8%)

Townsend deprivation index −1.1 (3.0) −1.2 (2.9)

Clinical factors

BMI (kg/m2) 27.3 (4.5) 27.2 (4.4)

Smoking status

 � Never 64 554 (56%) 29 238 (56%)

 � Previous 40 224 (35%) 18 421 (35%)

 � Current 11 176 (10%) 4943 (9%)

Spherical equivalent (diopters) −0.1 (2.1) 0.0 (2.0)

Numbers are mean (SD) or n (%), unless otherwise stated.
AMD, age-related macular degeneration; BMI, body mass index; NO2, nitrogen 
dioxide; NOx, nitrogen oxide; PM10, particulate matter (aerodynamic diameter of 
less than 10 µm); PM2.5, particulate matter (aerodynamic diameter of less than 
2.5 µm); PM2.5 absorbance, particulate matter (a measurement of the blackness 
of PM2.5 filter—a proxy for elemental or black carbon); PMcoarse, particulate matter 
(aerodynamic diameter between 2.5 and 10 µm).
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index, BMI, SER and PM2.5, compared with never smoking, 
previous and current smokers were not associated with self-
reported AMD (p>0.05). We have additionally adjusted for 
hypertension in the multivariable models in view of its rela-
tionship with AMD24 and air pollution.25 The associations of 
air pollutants with self-reported AMD, photoreceptor sublayers 
and RPE thickness did not differ after additional adjustment for 
hypertension. Sensitivity analysis showed that participants with 
higher exposure to PM2.5 was marginally associated with visually 
significant self-reported AMD (n=167, OR 1.18, 95% CI 0.98 
to 1.41; p=0.08, per IQR increase) compared with participants 
with either no self-reported AMD or those with non-visually 
significant self-reported AMD, although it was not statisti-
cally significant. None of the other air pollutants were statisti-
cally significant with visually significant self-reported AMD. In 
the sensitivity analysis, we have also additionally adjusted for 
smoking pack years and there was a borderline significant asso-
ciation between PM2.5 and self-reported AMD (OR 1.07, 95% CI 
0.99 to 1.16; p=0.07, per IQR increase).

DISCUSSION
In this large study of UKBB participants, we have identified 
novel associations between ambient outdoor air pollutant levels 
at participants’ residential addresses with self-reported AMD, 
and also with retinal structure (including thickness of photore-
ceptor and RPE layers on OCT imaging).

Our results showed that greater ambient PM2.5 exposure was 
associated with increased odds of AMD and corresponding retinal 
thicknesses (specifically photoreceptor sublayer and RPE). No 
such significant associations were observed for PMcoarse. This may 
be explained by differences in the sites of deposition in the respi-
ratory tract and the sources and chemical composition for these 
different-sized PM.26 PMcoarse are primarily produced from mechan-
ical grinding, windblown dust and agricultural activities, and 
mainly deposit in the upper and larger airways. In contrast, PM2.5 
particles are mainly from combustion process and are able to reach 
the smaller airways and alveoli and are transmitted to the blood,27 
causing a cascade of physiological events associated with morbidity 
and mortality.5 28 The deeper penetration of PM2.5 may account for 
the stronger associations of PM2.5 with self-reported AMD and struc-
tural biomarkers observed in our study.

Table 2  Association of ambient air pollution with self-reported 
AMD

Multivariate regression

OR (95% CI) P value

Air pollution factors

 � PM2.5 (µg/m3) 1.08 (1.01 to 1.16) 0.036

 � PM2.5 absorbance (µg/m3) 1.00 (0.93 to 1.07) 0.95

 � PM2.5–10 (µg/m3) 1.01 (0.96 to 1.07) 0.58

 � PM10 (µg/m3) 0.94 (0.86 to 1.02) 0.11

 � NO2 (µg/m3) 0.99 (0.91 to 1.08) 0.80

 � NOx (µg/m3) 1.03 (0.97 to 1.09) 0.34

The OR represents per IQR increase in exposure variable.
Values are adjusted for age, sex, race, Townsend deprivation index, BMI, smoking 
status and spherical equivalent refraction.
Bold values denote statistical significance at P<0.05 level.
AMD, age-related macular degeneration; BMI, body mass index; NO2, nitrogen 
dioxide; NOx, nitrogen oxide; PM10, particulate matter (aerodynamic diameter of 
less than 10 µm); PM2.5, particulate matter (aerodynamic diameter of less than 
2.5 µm); PM2.5 absorbance, particulate matter (a measurement of the blackness 
of PM2.5 filter—a proxy for elemental or black carbon); PMcoarse, particulate matter 
(aerodynamic diameter between 2.5 and 10 µm).
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NO2 is a product of combustion, primarily from traffic and 
industrial sources, and one of the most notable ambient air pollut-
ants associated with health effects.29 30 Similarly, NOx is produced 
from the reaction of nitrogen and oxygen gases in the air during 
combustion.31 NOx contributes to the formation of fine particles 
and ground level ozone. PM2.5 absorbance, a measurement of the 
blackness of PM2.5 filter—a proxy for elemental or black carbon, 
is also an indicator of combustion particles. Since the major 
source of NO2, NOx and PM2.5 absorbance is from combus-
tion particles, it may explain the similar associations observed 
between these air pollutants with the retinal structures. A recent 
longitudinal population-based study using data from the Taiwan 
National Health Insurance Programme between years 2000 and 
2010 included 39 819 AMD-free participants, with 1442 partic-
ipants developing AMD during the 11 year follow-up. AMD 
status was defined via International Classification of Diseases, 
Ninth Revision, Clinical Modification (ICD-9-CM). Compared 
with participants in the lowest exposure quartile, those in 
the highest quartile of NO2 and carbon monoxide (CO) had 
increased risk of self-reported AMD (NO2: HR=1.91, 95% CI 
1.64 to 2.23, p<0.001 and CO: HR=1.84, 95% CI 1.50 to 2.15, 
p<0.001, respectively).8 The difference in findings between ours 
and the Taiwanese study may be related to the study population, 
definition and proportion of AMD cases, type and method of 
estimating the exposure of air pollutants and type of covariates 
adjusted in the multivariable models. Compared with our study, 
the Taiwan study included slightly older participants (mean=62 
years vs 56 years), had a slightly higher proportion of AMD 
(3.6% vs 1.1%) and estimated a smaller number of air pollutants 
(two air pollutants including NO2 and CO vs six air pollutants). 
In addition, the participant’s living area was defined based on 
the treatment venue for acute upper respiratory tract infection 
in the Taiwan study. The effect of pollution on retinal structure 
associated with AMD were not examined in the Taiwan study.

Ambient air pollution could plausibly be associated with AMD 
through oxidative stress or inflammation. Oxidative damage 
induces many adverse biological effects including lipid, protein, 
DNA oxidation, initiation of proinflammatory processes28 
and RPE apoptosis.32 Atrophic or ‘dry’ AMD, also known as 

geographic atrophy is by degeneration of RPE cells, followed by 
loss of photoreceptor cells and choriocapillaris.33 Since the RPE 
is involved in the turnover of photoreceptor outer segments, 
RPE dysfunction may lead to thickening of photoreceptor outer 
segments.

Our results showed that PM2.5 and NOx were associated with 
a thinner photoreceptor synaptic region. This is in agreement 
with a reduction in the number of photoreceptor synaptic 
terminals overlying drusen in AMD.34 In contrast, PM2.5, PM2.5 
absorbance and NO2 were associated with thicker photore-
ceptor inner segment, while PM2.5 absorbance, NO2 and PM10 
were associated with thicker photoreceptor outer segment. As 
mitochondria are prominent in photoreceptor inner segments, 
oxidative stress may induce mitochondrial swelling,35 leading to 
a slight thickening in the photoreceptor inner segment. Abnor-
malities in the photoreceptor inner and outer segments have also 
been reported in retinal toxicity associated with hydroxychlo-
roquine.36 Our study did not show an association between air 
pollution and average total photoreceptor layer thickness, which 
may be explained by thinning of the synaptic region cancelling 
out the thickening of the inner/outer segments. In a study by 
Schuman et al, although the authors reported decreased photo-
receptor thickness over drusen, there was a lack of widespread 
photoreceptor loss.37 Hence, it is possible that there was focal 
loss of the photoreceptor thickness in our study but an overall 
loss of photoreceptor layer was not observed.

Cigarette smoking may also contribute to particulate matter air 
pollution.38 Because of the previously recorded, very strong link 
between AMD and smoking,39 and the plausible link between 
smoking and particulate air pollution, we examined the association 
between smoking status of participants with self-reported AMD and 
did not observe a significant association. This suggests that the rela-
tionship between PM2.5 and self-reported AMD is not mediated by 
cigarette smoke. The prevalence of late AMD standardised to the 
UK population aged 50 years or more and 65 years or more was 
2.4% and 4.8%, respectively. Prevalence of geographic atrophy 
was 1.3% and 2.5% for the respective age groups.40 The European 
Eye Epidemiology (E3) Consortium performed a meta-analysis and 
showed that overall prevalence was 13.2% for early AMD and 3.0% 
for late AMD for people aged 70 years or older.41 Compared with 
the E3 Consortium, participants in UKBB are slightly younger and 
include a healthier population than the rest of UK population.42 The 
self-reported AMD cases in our study may represent AMD in the 
early stages. We compared the VA between participants with and 
without self-reported AMD. Among those with self-reported AMD, 
there was a higher proportion of participants with visual impairment 
(VA worse than LogMAR 0.3) compared with those without visual 
impairment (1.8% vs 1.0%; p<0.001). The proportion of self-
reported AMD (1.1%) in our study may have been underestimated 
and it is likely that the risk estimates may have been underestimated.

In addition to the increased risk of AMD associated with 
higher exposure to air pollution in the Taiwanese study, other 
studies in the UKBB43 and China7 have reported increased odds 
of glaucoma with higher exposure to PM2.5. In the UKBB study 
of 111 370 participants, greater exposure to PM2.5 was associated 
with both self-reported glaucoma and retinal structures associ-
ated with the disease.43 Wang et al reported that higher average 
levels of PM2.5 was associated with higher burden of glaucoma 
disability, using national level data.7 The New England-based 
Normative Aging Study showed an association between black 
carbon exposure with IOP that was greater in individuals with 
a high oxidative stress allelic score.44 Taken together, our results 
support published findings of increased risk of eye diseases or 
association with retinal structures in participants with higher 

Table 4  Association of ambient air pollution with thickness of the 
RPE layer

Multivariate regression

RPE

β (95% CI) P value

Air pollution factors

 � PM2.5 (µg/m3) −0.13 (−0.21 to –0.05) 0.002

 � PM2.5 absorbance (µg/m3) −0.09 (−0.17 to –0.008) 0.03

 � PMcoarse (µg/m3) −0.02 (−0.08 to 0.04) 0.50

 � PM10 (µg/m3) −0.12 (−0.21 to –0.02) 0.01

 � NO2 (µg/m3) −0.12 (−0.21 to –0.02) 0.01

 � NOx (µg/m3) −0.05 (−0.12 to 0.02) 0.17

The β coefficients represent per IQR increase in exposure variable.
Values are adjusted for age, sex, race, Townsend deprivation index, BMI, smoking 
status and refractive error.
Bold values denote statistical significance at P<0.05 level.
BMI, body mass index; NO2, nitrogen dioxide; NOx, nitrogen oxide; PM10, particulate 
matter less than 10 µm in aerodynamic diameter; PM2.5, particulate matter less 
than 2.5 µm in aerodynamic diameter; PM2.5 ab, (PM2.5 absorbance) a measurement 
of the blackness of PM2.5 filter—a proxy for elemental or black carbon; PMcoarse, 
particulate matter between 2.5 µm to 10 µm in aerodynamic diameter; RPE, retinal 
pigment epithelium.;
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exposure to ambient air pollution. As certain groups of individ-
uals including people with diabetes mellitus45 or hypertension24 
may have increased risk of AMD, it will be useful to explore if 
these groups of individuals are at greater risk of eye disease when 
exposed to air pollution in future analysis.

Strength of this study include its large sample size and the highly 
accurate and reproducible measurements of the OCT retinal thick-
ness. Limitations of the study include the UKBB is a volunteer 
cohort, and participants are likely healthier than the general popu-
lation. Outdoor air pollution was estimated using the participants’ 
home address and do not explain all variation in indoor concentra-
tions. As most individuals spend a large amount of time indoors, 
individual exposure to all forms of air pollution may differ from 
that indicated by the ambient outdoor figures. This is most likely 
to be non-differential between cases and controls and will therefore 
skew the associations towards the null. Another limitation of this 
analysis was the use of self-report as the sole determinant of AMD 
status rather than incorporating a qualitative analysis of the colour 
fundus photographs and spectral-domain optical coherence tomog-
raphy (SD-OCT) imaging, though we did carry out masked grading 
of retinal imaging in a proportion of participants. This may result in 
non-differential misclassification bias and most likely bias the esti-
mates towards the null. Although we applied strict automated quality 
control criteria including a manual check of SD-OCT scans with 
high and low outlying layer thickness,17 it was not practical to manu-
ally check all OCT scans for segmentation accuracy. Selection bias 
may exist: out of the 115 954 participants with data on self-reported 
AMD, 52 602 participants had measurements on outer retinal layers. 
However, the baseline characteristics (table 1) across the two AMD-
associated outcome groups appear to be similar. The cross-sectional 
design of our study limits the ability to determine the causality 
between ambient air pollution and AMD-associated outcomes. 
Further research is needed to probe the relationship between prior 
air pollution exposure and risk of incident disease.

In this large study of an older middle-aged UK population, 
higher PM2.5 exposure was associated with a higher risk of self-
reported AMD, while all pollutants except PMcoarse were associ-
ated with changes in retinal structure (in either photoreceptor 
sublayer and/or RPE layer thickness). Overall, our findings 
suggest that ambient air pollution, especially fine PM or those of 
combustion-related particles, may affect AMD risk. It is possible 
that the structural features observed may be unrelated to AMD, 
but associated with pollution-induced retinal toxicity. However, 
the direction of the relationships between air pollution and both 
AMD and associated retinal layer thicknesses indicate higher 
exposure to air pollution may make the cells more vulnerable 
and increase the risk of AMD. Our findings add to the growing 
evidence of the damaging effects of ambient air pollution, even 
in the setting of relative low exposure of ambient air pollution. 
As UKBB is a very large prospective cohort, we anticipate being 
able to explore the effect of particulate matter on future risk 
of AMD. Further studies examining both outdoor and indoor 
ambient air pollution estimates on AMD and outer retinal struc-
tures may help to substantiate our findings and understand the 
implications for retinal disease associated with ageing. If our 
findings are replicated, this would support the view that air 
pollution is an important modifiable risk factor for AMD.
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Supplementary Table 1. Comparison of characteristics between participants with self-reported AMD and 
without self-reported AMD   

  
No self-reported AMD 

(N=114,668)  

Self-reported AMD 
(N=1,286) P-value 

Sociodemographic factors     
Age 56.8 (8.1)  61.6 (5.9) <0.001 

Sex     
   Men 52,692 (46.0%)  526 (40.9%)  
   Women 61,976 (54.0%)  760 (59.1%) <0.001 

Race  
   

   White 104,269 (90.9%)  1,196 (93.0%)  
   Non-white 10,399 (9.1%)  90 (7.0%) 0.01 

Townsend deprivation index -1.1 (3.0)  -1.5 (2.9) <0.001 

Clinical factors  
   

Body mass index (kg/m2) 27.2 (4.5)  27.4 (4.3) 0.18 

Smoking status      
   Never 63,879 (55.7%)  675 (52.5%)  
   Previous 39,714 (34.6%)  510 (39.7%)  
   Current 11,075 (9.7%)  101 (7.8%) <0.001 

Spherical equivalent (diopters) -0.08 (2.1)   -0.03 (2.3) 0.40 
AMD status was classified based on self-reporting and hospital episode statistics data (ICD10).   
Numbers are mean (SD) for continuous variables and no. (%) for categorical variables.    
AMD= Age-related macular degeneration     
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Supplementary Table 2. Distribution of PM2.5, PMcoarse, PM10, NO2 and NOX of participants with availability of 

data on self-reported AMD and retinal layers 

 
Self-reported AMD 

 
Retinal layers  

 
(N=115,954) 

 
(N=52,602) 

  Median (IQR) Range   Median (IQR) Range 

PM2.5 (µg/m3) 9.91 (1.07) (8.17, 19.69) 
 

9.88 (1.12) (8.17, 19.69) 

      
PM2.5 absorbance (µg/m3) 1.22 (0.33) (0.83, 4.05) 

 
1.22 (0.33) (0.83, 3.71) 

      
PMcoarse (µg/m3) 6.19 (0.75) (5.57, 12.82) 

 
6.21 (0.77) (5.57, 11.30) 

      
PM10 (µg/m3) 19.37 (2.67) (13.04, 29.67) 

 
19.33 (2.77) (13.38, 29.30) 

      
Nitrogen dioxide (NO2) (µg/m3) 31.75 (12.08) (9.44, 102.75) 

 
31.25 (12.63) (9.44, 86.65) 

      
Nitrogen oxide (NOX) (µg/m3) 43.66 (14.38) (19.74, 263.96)   43.17 (14.97) (19.74, 263.96) 

AMD = Age-related macular degeneration, IQR = Interquartile range, PM2.5= Particular matter (aerodynamic diameter of less than 2.5µm), PM2.5 

absorbance= Particulate matter (a measurement of the blackness of PM2.5 filter – a proxy for elemental or black carbon), PMcoarse = Particulate 

matter (aerodynamic diameter between 2.5 and 10µm, PM10= Particulate matter (aerodynamic diameter of less than 10µm), NO2= Nitrogen 
dioxide, NOx= Nitrogen oxide 
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