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The clinical impact of rare loss-of-function variants has yet to 
be determined for most genes. Integration of DNA sequenc-
ing data with electronic health records (EHRs) could enhance 
our understanding of the contribution of rare genetic varia-
tion to human disease1. By leveraging 10,900 whole-exome 
sequences linked to EHR data in the Penn Medicine Biobank, 
we addressed the association of the cumulative effects of 
rare predicted loss-of-function variants for each individual 
gene on human disease on an exome-wide scale, as assessed 
using a set of diverse EHR phenotypes. After discovering 97 
genes with exome-by-phenome-wide significant phenotype 
associations (P < 10−6), we replicated 26 of these in the Penn 
Medicine Biobank, as well as in three other medical biobanks 
and the population-based UK Biobank. Of these 26 genes, five 
had associations that have been previously reported and rep-
resented positive controls, whereas 21 had phenotype asso-
ciations not previously reported, among which were genes 
implicated in glaucoma, aortic ectasia, diabetes mellitus, 
muscular dystrophy and hearing loss. These findings show the 
value of aggregating rare predicted loss-of-function variants 
into ‘gene burdens’ for identifying new gene–disease asso-
ciations using EHR phenotypes in a medical biobank. We sug-
gest that application of this approach to even larger numbers 
of individuals will provide the statistical power required to 

uncover unexplored relationships between rare genetic varia-
tion and disease phenotypes.

A ‘genome-first’ approach, in which genetic variants of interest 
are identified and then subsequently associated with phenotypes, 
has the potential to inform the genetic basis of human disease and 
reveal new insights into gene function and human biology2. This 
approach can be applied to ‘medical’ biobanks consisting of health 
care populations with DNA sequence data linked to extensive EHR 
phenotype data, thus permitting ‘phenome-wide association stud-
ies’ (PheWAS) as an agnostic approach to determining the clini-
cal impact of specific genetic variants3. Genome-first approaches 
utilizing PheWAS have primarily focused on individual common 
variants of modest effect4. Very rare and private coding variants are 
more likely to have larger effect sizes and are of great interest, but 
are generally too rare to study in a univariate fashion5. Aggregation 
of multiple rare variants in a gene (that is, gene burden) not only 
increases the statistical power of regression analyses but also enables 
gene-based association studies to describe the clinical implications 
of loss of gene function in human disease6.

Previously, we leveraged the Penn Medicine Biobank (PMBB, 
University of Pennsylvania), a large academic medical biobank with 
whole-exome sequencing (WES) data linked to EHR data, to show 
that aggregating rare, loss-of-function variants in a single gene or 
targeted sets of genes to conduct gene burden PheWAS has the 
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potential to uncover new pleiotropic relationships between the gene 
and human disease7,8. We applied rare predicted loss-of-function 
(pLOF)-based gene burden PheWAS on an exome-wide scale, uti-
lizing WES data to conduct exome-by-phenome-wide association 
studies (ExoPheWAS) to evaluate in detail the clinical phenotypes 
(phecodes) associated with rare pLOF variants on a gene-by-gene 
basis across the human exome and replicated our top results in sev-
eral other medical biobanks.

We interrogated a dataset of 10,900 individuals with WES data 
in the PMBB (Table 1) for carriers of rare (minor allele frequency 
(MAF) ≤ 0.1% in the Genome Aggregation Database (gnomAD)) 
pLOF variants, which include frameshift insertions or deletions, 
gain or loss of stop codon and disruption of canonical splice site 
dinucleotides. The distribution of the number of carriers for rare 
pLOF variants for each gene was on a negative exponential distri-
bution (Extended Data Fig. 1). We chose to interrogate genes with 
at least 25 heterozygous carriers for rare pLOF variants (n = 1,518 
genes), for which we show that statistical power to detect an associa-
tion is sufficient as a function of effect size and the number of cases 
of the associated phenotype (Extended Data Fig. 2). We collapsed 
rare pLOF variants into gene burdens across these 1,518 genes for 
ExoPheWAS analyses with 1,000 binary phecodes with at least 
20 cases (Fig. 1). Given that P values for gene burden association 
studies interrogating rare loss-of-function variants may be inflated 
due to their higher likelihood of increasing disease risk compared 
to other variants9, we found that our associations roughly devi-
ated from the fitted expected distribution at an observed P < 10−6 
(Extended Data Fig. 3). We identified 97 gene burdens with phe-
notype associations at P < 10−6 (Fig. 2 and Supplementary Table 1). 
We addressed potential inflation issues regarding small sample sizes 
using Firth’s penalized likelihood approach and found that beta and 
significance estimates were consistent with exact logistic regression 
(Supplementary Table 1).

We evaluated the robustness of the significant gene–phenotype 
associations identified using pLOF-based ExoPheWAS analyses 
by testing the associations in the same PMBB cohort between a 
separate group of rare ‘likely deleterious’ exonic missense vari-
ants in the 97 significant genes with the same disease phenotypes 
that were identified in the discovery cohort (Fig. 1). We utilized 
the rare exonic variant ensemble learner (REVEL), an ensemble 
method for predicting the pathogenicity of missense variants10, to 
define predicted deleterious missense variants (REVEL score ≥ 0.5), 
given the success of the tool in identifying likely pathogenic vari-
ants for gene burden association studies7. First, we separately col-
lapsed rare (MAF ≤ 0.1%), REVEL-informed predicted deleterious 

Table 1 | Demographics and disease prevalence of the PMBB 
discovery cohort

Basic demographics

 Total population, n 10,900

 Female, n (%) 4,432 (40.7)

 Median age (at biobank entry), years 67.0

Genetically informed ancestry

 AFR, n (%) 2,172 (19.9)

 AMR, n (%) 304 (2.8)

 EAS, n (%) 79 (0.7)

 EUR, n (%) 8,198 (75.2)

 SAS, n (%) 114 (1.0)

Cardiovascular phenotypes

 Essential hypertension, n (%) 6,441 (59.1)

 Ischemic heart disease, n (%) 5,008 (45.9)

 Myocardial infarction, n (%) 1,640 (15.0)

 Cardiomyopathy, n (%) 1,976 (18.1)

 Congestive heart failure; nonhypertensive, n (%) 3,695 (33.9)

 Heart transplant/surgery, n (%) 518 (4.8)

 Cardiac dysrhythmias, n (%) 5,784 (53.1)

 Atrial fibrillation and flutter, n (%) 3,782 (34.7)

 Cerebrovascular disease, n (%) 1,706 (15.7)

 Peripheral vascular disease, n (%) 954 (8.8)

 Aortic aneurysm, n (%) 836 (7.7)

 Atherosclerosis, n (%) 539 (4.9)

Endocrine/metabolic phenotypes

 Type 2 diabetes, n (%) 2,799 (25.7)

  Overweight, obesity and other hyperalimentation, 
n (%)

2,275 (20.9)

 Hyperlipidemia, n (%) 6,231 (57.2)

 Hypercholesterolemia, n (%) 2,034 (18.7)

 Hypothyroidism, n (%) 1,314 (12.1)

 Gout and other crystal arthropathies, n (%) 811 (7.4)

Gastrointestinal phenotypes

 Esophagitis, GERD and related diseases, n (%) 2,526 (23.2)

 Gastrointestinal hemorrhage, n (%) 660 (6.1)

 Diverticulosis and diverticulitis, n (%) 610 (5.6)

 Chronic liver disease and cirrhosis, n (%) 449 (4.1)

Renal phenotypes

 Chronic renal failure, n (%) 2,135 (19.6)

 End-stage renal disease, n (%) 510 (4.7)

 Kidney replaced by transplant, n (%) 283 (2.6)

Neuropsychiatric phenotypes

 Mood disorders, n (%) 1,353 (12.4)

 Anxiety, phobic and dissociative disorders, n (%) 1,322 (12.1)

  Delirium, dementia and amnestic and other 
cognitive disorders, n (%)

123 (1.1)

Respiratory phenotypes

 Chronic airway obstruction, n (%) 1,314 (12.1)

 Asthma, n (%) 920 (8.4)

 Obstructive sleep apnea, n (%) 1,623 (14.9)
Continued

 Respiratory failure, insufficiency and arrest, n (%) 697 (6.4)

Sensory phenotypes

 Cataract, n (%) 796 (7.3)

 Hearing loss, n (%) 579 (5.3)

 Glaucoma, n (%) 449 (4.1)

Congenital phenotypes

 Cardiac and circulatory congenital anomalies, n (%) 780 (7.2)

 Genitourinary congenital anomalies, n (%) 151 (1.4)

 Cystic kidney disease, n (%) 108 (1.0)

 Congenital anomalies of great vessels, n (%) 77 (0.7)

Demographic information and clinical phenotypic counts for all individuals with WES linked 
to EHRs in the PMBB. Clinical phenotypes were defined by phecodes (Methods). Data are 
represented as count data with percentage prevalence in the population in parentheses, where 
appropriate. AFR, Africa; AMR, the Americas; EAS, East Asia; EUR, Europe; SAS, South Asia; GERD, 
gastroesophageal reflux disease.

Table 1 | Demographics and disease prevalence of the PMBB 
discovery cohort (Continued) 
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missense variants to test discovery-driven associations with their 
corresponding phenotypes (Supplementary Table 2). We also inter-
rogated single variants, including both pLOF variants and pre-
dicted deleterious missense (REVEL ≥ 0.5) variants, in the 97 genes 
identified in the discovery cohort that were of sufficient frequency 
(MAF > 0.1%) and therefore were not included in either of the gene 
burden analyses (Supplementary Table 3).

We also endeavored to replicate our significant ExoPheWAS 
discovery analysis associations (Fig. 1) using a separate cohort of 
6,432 African Americans in the PMBB who were exome sequenced 
(PMBB2; Supplementary Tables 4–6), as well as two additional med-
ical biobanks with WES data linked to EHR phenotypes, namely 
BioMe (Mount Sinai; Supplementary Tables 7–9) and DiscovEHR 
(Geisinger Health System; Supplementary Tables 10–12), as well 
as the population-based UK Biobank (UKB; Supplementary 
Tables 13–15). For each of the 97 significant genes, we interro-
gated: (1) gene burdens after collapsing rare (MAF ≤ 0.1%) pLOF 
variants, (2) gene burdens after collapsing nonoverlapping rare 
(MAF ≤ 0.1%) REVEL-predicted deleterious missense variants and 
(3) single pLOF or REVEL-predicted deleterious missense variants 
with MAF > 0.1% for association with their discovery phenotypes. 
Finally, we further interrogated a targeted list of univariate replica-
tions in BioVU (Vanderbilt; Supplementary Table 16).

We identified a total of 26 robust genes using the diverse con-
vergent evidence (DiCE) approach11 for ranking associations using 
a combination of the number of significant replications and func-
tional validation (Table 2 and Supplementary Table 17). Five of these 
genes can be considered positive control gene–disease associations. 
A gene burden of rare pLOF variants in CFTR was significantly 
associated with cystic fibrosis (CF), a recessive condition caused 
by biallelic variants in CFTR. This was driven by individuals with 
a rare pLOF variant who had a second deleterious CFTR variant—
predominantly ∆F508—that was not included in the pLOF gene 
burden. This association of the CFTR pLOF gene burden with CF 
was not replicated in other biobanks due to the extremely low case 
prevalence of CF (Supplementary Table 18). The CFTR pLOF gene 
burden was also significantly associated with bronchiectasis inde-
pendent of a CF diagnosis and occurred in individuals without a 
second CFTR variant; this finding was replicated in all interrogated 
cohorts. While a predisposition to bronchiectasis due to haploin-
sufficiency of CFTR has been suggested12, our finding strengthens 
this observation. TTN is a known dilated cardiomyopathy gene 
that was replicated convincingly across other cohorts. MYBPC3 is 
a known hypertrophic cardiomyopathy (HCM) gene that was rep-
licated in BioMe and DiscovEHR, but not in the UKB, where HCM 
had a case-control ratio of an order of magnitude lower than the 
medical biobanks (Supplementary Table 18). These results indicate 
that medical biobanks have a different—and sicker—population 
that enables discovery of associations of human diseases driven by 
rare genetic variants. A pLOF gene burden in BRCA2 was associated 
with breast cancer and replicated in all biobanks. BRCA1 was asso-
ciated with breast cancer in the discovery cohort (P = 1.29 × 10−4) 
but due to inadequate power did not meet our significance thresh-
old. Finally, CYP2D6 is a P450 enzyme known to metabolize opi-
oids13; we found that CYP2D6 was significantly associated with 
adverse effects of therapeutic opiate use.

We identified 20 robust genes with new disease associations 
that had at least two additional replications beyond the discovery 
experiment, and one strongly supported by the DiCE analysis (Table 
2 and Supplementary Tables 2–17). Some have previous biologi-
cal plausibility, and for others we generated additional functional 
data supporting a biological basis to these associations. For exam-
ple, a BBS10 gene burden was significantly associated with HCM. 
BBS10 is one of at least 19 genes implicated in autosomal recessive 
Bardet–Biedl syndrome and accounts for ~20% of all cases14. BBS10 
is expressed in the heart15 and cardiac abnormalities have been 

reported in Bardet–Biedl syndrome, including hypertrophy of the 
interventricular septum16, but cardiac abnormalities due to haplo-
insufficiency of BBS10 have not been described. We interrogated 
echocardiography data in carriers of rare pLOF variants in BBS10 
in the PMBB compared with non-carriers and found increased 
left ventricular outflow tract stroke volume, consistent with car-
diac hypertrophy (Supplementary Table 19). Rare pLOF variants in 
SCNN1D, which encodes the delta subunit of the epithelial sodium 
channel (δENaC), were associated with cardiac conduction disor-
ders and replicated robustly across medical biobanks. SCNN1D is 
expressed in the heart (unlike epithelial tissue-specific expression 
for SCNN1A and SCNN1B)17, there is an association between 1p36 
deletions (which contain SCNN1D) and congenital heart defects18, 
and decreased expression of δENaC may contribute to disrupted 
sodium and potassium homeostasis in ischemic heart diseases19. 
The association between rare pLOF variants in ZNF175 and tinnitus 
(additionally, hearing loss barely missed the significance threshold), 
which replicated in BioMe, DiscovEHR and UKB, is supported by 
the finding that mice with loss-of-function in Zfp719 (the mouse 
ortholog) are profoundly deaf and have an abnormal Preyer reflex 
(auditory startle response)20, as well as raised auditory brainstem 
response thresholds21. Zfp719 is expressed in inner and outer hair 
cells of the mouse ear22, and human ZNF175 has a suggested role in 
neurotrophin production and neuronal survival23.

Rare pLOF variants in FER1L6 were robustly associated with 
muscular wasting and disuse atrophy. FER1L6 is a member of the fer-
lin family of genes, and mutations in FER1L1 (dysferlin) are known 
to cause recessive forms of muscular dystrophy24. Importantly, loss 
of the zebrafish ortholog Fer1l6 has been shown to lead to defor-
mation of striated muscle and delayed cardiac development25. 
Similarly, pLOF variants in MYCBP2, an E3 ubiquitin-protein ligase 
critical in neuromuscular development in mice26, Drosophila27 and 
Caenorhabditis elegans28, were associated with muscular spasms and 
dystrophy. Mice lacking the mouse ortholog Phr1 are lethal at birth 
without taking a breath due to incomplete innervation of the dia-
phragm by markedly narrower phrenic nerves that contain fewer 
axons than controls26. We found that MYCBP2 showed significantly 
decreased expression in various lower extremity muscle tissues in 
tibial muscular dystrophy in humans (Extended Data Fig. 4). Our 
findings suggest that haploinsufficiency in FER1L6 or MYCBP2 
increases the risk of developing dystrophic skeletal muscle.

Rare pLOF variants in CES5A were robustly associated with 
abnormal coagulation. Upon further investigation of EHR labora-
tory data in the PMBB, we found that carriers of rare pLOF vari-
ants in CES5A had increased international normalized ratios 
(β = 8.2, P = 2.13 × 10−2; n = 5,275) and partial thromboplastin times 
(β = 13.9, P = 2.07 × 10−2; n = 3,786) compared to non-carriers. 
Through chart review, we found an enrichment of gastrointestinal 
bleeding episodes following use of antiplatelet medications among 
carriers for rare pLOF variants in CES5A. CES5A is part of the fam-
ily of carboxylesterases, which are known metabolizers of various 
orally bioavailable drugs, including the antiplatelet medications 
aspirin and clopidogrel29. Given its predominant expression in the 
liver15, it is thus plausible that haploinsufficiency of CES5A predis-
poses to adverse effects of antiplatelet medications.

Another finding was that rare pLOF variants in PPP1R13L, one 
of the most evolutionarily conserved inhibitors of p53 (ref. 30), were 
associated with primary open-angle glaucoma—a disease of the 
optic nerve head (ONH) that causes progressive vision loss. We 
interrogated the expression of PPP1R13L in silico using the Ocular 
Tissue Database (OTDB) and found that it is highly expressed in 
ocular tissues, with optic nerve and the ONH among the highest 
(Supplementary Table 20). Retinal ganglion cells (RGCs) are the 
primary cells affected by glaucoma, and cells in the ONH such as 
astroglia, microglia and endothelial cells mediate RGC degenera-
tion in response to stress such as increased intraocular pressure. 
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We investigated whether Ppp1r13l is differentially expressed in the 
mouse ONH in glaucoma by comparing microarray gene expres-
sion datasets of the ONH31. We found Ppp1r13l expression was 
highest during late-early to moderate stages of glaucoma (Extended 
Data Fig. 5a). Additionally, inhibition of PPP1R13L has been shown 
to exacerbate RGC death following axonal injury32. We found that 
the PPP1R13L protein was predominantly localized to the gan-
glion cell layer in the adult human retina, with some expression in 
the outer and inner plexiform layers, confirming its role in RGC 
function (Extended Data Fig. 5b). Using human induced pluripo-
tent stem cell-derived RGCs (iPSC-RGCs), we found that oxidative 
stress markedly upregulated PPP1R13L expression (Extended Data 
Fig. 5c) to a much greater extent than even superoxide dismutase 

1 (SOD1), which is known to be transcriptionally upregulated in 
response to oxidative stress. Thus, PPP1R13L is expressed in RGCs, 
is significantly upregulated by oxidative stress and may help to pre-
vent RGC death from p53 activation and p53-mediated apoptosis in 
primary open-angle glaucoma33. Our results are consistent with the 
concept that haploinsufficiency of PPP1R13L in RGCs increases the 
visual consequences of primary open-angle glaucoma.

Another interesting finding was that rare pLOF variants in RGS12 
were associated with type 1 diabetes mellitus (T1D) and its compli-
cations. In the PMBB, carriers of rare pLOF variants in RGS12 had 
higher median values for random serum glucose than non-carriers 
(β = 16.9, P = 2.91 × 10−2; n = 5,389). RGS12, an inhibitor of signal 
transduction in G-protein signaling, contains an N-terminal PDZ 

WES

Discovery
(n = 10,900)

EHRs

Rare (MAF ≤ 0.1%) pLOF variants
(frameshift in/dels, stop codon

gain/loss and splicing)

ICD-9 and ICD-10 encounter
diagnosis codes

1,518 gene burdens
with ≥ 25 pLOF carriers

1,000 Phecodes
with ≥ 20 cases

97 gene burdens
with P < 10−6

Replication studies in PMBB

1. Rare, predicted deleterious (REVEL ≥ 0.5)
missense-based gene burdens

2. Low-frequency to common (MAF > 0.1%)
pLOFs and predicted deleterious missense

 3. Additional PMBB samples (PMBB2; n = 6,432)

Chart review, quantitative trait
associations and functional

validation experiments

Replication studies in BioMe,
DiscovEHR, UKB and BioVU

Fig. 1 | Flow chart for exome-by-phenome-wide association analysis using electronic health record phenotypes. Flow diagram outlining the primary 
methodologies used for conducting the ExoPheWAS and for evaluation of the robustness of the associations, indicating that 97 genes had associations 
at a significance level of P < 10−6 using logistic regression. The pathways starting with short descending arrows represent the ‘discovery phase’, in which 
pLOF-based gene burdens were studied on an exome-by-phenome-wide scale in 10,900 individuals from the PMBB. ‘Replication studies in PMBB’ refers to 
analyses of gene-phenotype associations using REVEL-informed missense-based gene burdens and univariate analyses within the discovery PMBB cohort, 
as well as in an independent cohort of African Americans in the PMBB (the PMBB2 cohort; n = 6,432). Additional replication studies included analyses 
of gene–phenotype associations using pLOF-based gene burdens, REVEL-informed missense-based gene burdens and univariate analyses in BioMe 
(n = 23,989), DiscovEHR (n = 85,450) and the UKB (n = 32,268), as well as univariate analyses in BioVU (n = 66,400). The DNA helix image is from 
Pixabay. The male and female silhouettes are from Freepik. The electronic health records image is from eClinicalWorks with permission.
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domain that selectively binds to and represses the macrophage 
interleukin (IL)-8 receptor CXCR2 (ref. 34). Activation of macro-
phage CXCR2 by IL-8 is proinflammatory, and its antagonism leads 
to attenuation of immune cell infiltration and cytokine release, as 
well as a shift of macrophages to the anti-inflammatory M2 state, 
thereby counteracting inflammatory signaling pathways in diabe-
tes35. To further investigate RGS12 in T1D, we generated single-cell 
RNA-sequencing (RNA-seq) data in human pancreatic islets from 
individuals with T1D and controls collected by the Human Pancreas 
Analysis Program (https://hpap.pmacs.upenn.edu) and interrogated 
RGS12 expression in distinct functional cells. We found that while 
RGS12 showed no significant differential expression in pancreatic 
endocrine or exocrine cells in T1D compared to controls, there was 
a substantial reduction of expression of RGS12 in peri-islet CD45+ 
macrophages in T1D (Extended Data Fig. 6). These results are con-
sistent with a model that RGS12 dampens islet macrophage inflam-
matory responses and that haploinsufficiency of RGS12 predisposes 
to greater islet inflammation and higher risk of T1D.

Additionally, rare pLOF variants in CILP were associated with 
aortic ectasia, or dilatation of the aorta often associated with con-
nective tissue disorders. Chart review of CILP pLOF carriers 
showed an enrichment for ascending thoracic aortic aneurysms. 
CILP encodes an extracellular matrix protein and is best known for 
its expression in chondrocytes36. However, CILP is also expressed 
in the cardiovascular system15, and has been shown to be involved 
in cardiac remodeling in response to pressure overload37. We per-
formed single-cell RNA-seq of normal mouse aorta and found that 
Cilp expression was localized mainly to adventitial fibroblasts in 
the aorta but showed no significant expression in aortic smooth 
muscle cells (Extended Data Fig. 7a,b). Single-cell RNA-seq of 
human aorta confirmed that CILP was localized to aortic fibroblasts 
(Extended Data Fig. 7c,d). Importantly, CILP has been reported 
to modulate TGFB1 signaling and IGF1-induced proliferation38, 
and dysregulated transforming growth factor (TGF)-β signaling 
has been shown to contribute to the pathogenesis of thoracic aor-
tic aneurysm formation39. To further interrogate the relationship 
between CILP and TGFB1 in human fibroblasts, we conducted a 
meta-analysis of 11 independent microarray and RNA-seq datasets 

for human fibroblasts from various tissues treated with TGF-β from 
the Gene Expression Omnibus (GEO). We found that CILP was in 
the top 1% of significantly upregulated genes in human fibroblasts 
when treated with TGF-β (log2 fold change = 1.964, P = 3.60 × 10−29; 
Extended Data Fig. 7e), confirming its role in a functional feedback 
loop with TGF-β as similarly seen in the context of chondrocyte 
metabolism36. Furthermore, CILP was differentially coexpressed 
with IGF1, as well as genes implicated in aortic ectasia including 
SMAD3, ACTA2, MYH11 and ELN (Extended Data Fig. 7e)39. Our 
findings suggest that haploinsufficiency of CILP predisposes to the 
risk of developing thoracic aortic dilatation, perhaps through com-
promising the structural integrity of the aortic wall and contribut-
ing to dysregulation of TGF-β signaling.

There has been a substantial gap of knowledge regarding the 
clinical implications of genetic variants overrepresented among 
Africans due to the lack of ancestral diversity in the populations 
that have been studied in previous genetic association studies40. In 
the PMBB discovery cohort, 19.9% of individuals were of African 
ancestry, and three of our replication cohorts included substantial 
numbers of African Americans (6,432 in PMBB2, 6,470 in BioMe 
and 10,456 in BioVU). Interestingly, we identified 16 rare predicted 
deleterious single variants specific to African ancestry that rep-
licated associations with the same disease in which a pLOF gene 
burden was associated in the discovery study (Supplementary Table 
21). None of these rare variants exist in the genome-wide associa-
tion study catalog or have been previously mentioned in the pub-
lished literature. Our findings suggest that larger experiments of 
this type in ethnically diverse cohorts are imperative for improv-
ing our understanding of the contribution of ancestry-specific rare 
genetic variants to human disease.

An important challenge in rare-variant association studies is 
the difficulty of performing replication studies. Here we show the 
value of evaluating the robustness of gene burden associations by 
interrogating other deleterious variants in the same genes (but in 
different individuals) in the same biobank cohort. We also per-
formed replication studies in another cohort in the PMBB, as well 
as in two other medical biobanks with WES data. These provided 
more replication than the UKB, which is a population-based  
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Fig. 2 | ExoPheWAS plot exhibits the landscape of gene–phenotype associations across the exome and phenome in the PMBB. Plot showing the 
results of the ExoPheWAS in the PMBB for 1,518 gene burdens of rare (MAF ≤ 0.1%) pLOF variants. The x axis represents the exome and is organized by 
chromosomal location. The location of each gene along the x axis corresponds to the genomic location for each gene according to the Genome Reference 
Consortium Human build 37 (GRCh37). The association of each gene burden with a set of 1,000 phecodes is plotted vertically above each gene, with the 
height of each point representing the –log10(P value) of the association between the gene burden and phecode using a logistic regression model. Each 
phecode point is color coded according to the phecode group, and the directionality of each triangular point represents the direction of effect (DOE). The 
blue line represents the significance threshold at P = 10−6 to account for multiple hypothesis testing. NOS, not otherwise specified.
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biobank that is widely recognized to have a ‘healthy volunteer 
selection bias’ (ref. 41) and has lower prevalence of the specific dis-
eases than the medical biobanks (Supplementary Table 18). This 
may be one factor explaining the relative lack of new findings in 
gene burden studies using the UKB for discovery42,43. Finally, we 
show that one should not expect a uniform fit for P values when 
interrogating the cumulative effect of rare pLOF variants, and 
that the validity of the results is due as much to robust replication 
in other cohorts as to the determination of a particular signifi-
cance threshold. To this end, our study emphasizes the value of 

medical biobanks for discovery of new gene–disease associations 
based on rare variants.

In conclusion, we demonstrate the feasibility and value of aggre-
gating rare pLOF variants into gene burdens on an exome-wide scale 
for association with EHR-derived phenotypes in a medical biobank 
for the discovery of new gene–disease relationships. Our compel-
ling findings based on initial discovery in <11,000 whole-exome 
sequences suggest that much larger experiments of this type are 
likely to be highly informative and will lead to many new insights 
into the biology of human phenotypes and diseases.

Table 2 | List of robust exome-by-phenome-wide significant gene–phenotype associations

Gene Phecode description Discovery P Replications (n) Clinical/experimental 
evidence

Positive control associations

BRCA2 Breast cancer 1.72 × 10−7 4 ✓

CFTR Bronchiectasis 2.27 × 10−7 10 ✓

Pseudomonal pneumonia 4.21 × 10−11 5 ✓

Cystic fibrosis 1.05 × 10−15 1 ✓

CYP2D6 Opiates and related narcotics causing adverse effects in 
therapeutic use

1.50 × 10−9 3 ✓

MYBPC3 Hypertrophic cardiomyopathy 3.49 × 10−15 5 ✓

TTN Cardiomyopathy 7.83 × 10−13 10 ✓

Cardiac conduction disorders 6.45 × 10−9 10 ✓

Cardiac dysrhythmias 1.77 × 10−8 12 ✓

New associations

ABCA10 Benign neoplasm of brain, cranial nerves and meninges 7.26 × 10−8 2

Abnormal results of function study of pulmonary system 1.54 × 10−7 3

BBS10 Hypertrophic cardiomyopathy 2.89 × 10−8 1 ✓

CES5A Abnormal coagulation profile 8.10 × 10−8 5

CILP Aortic ectasia 4.29 × 10−8 3 ✓

CTC1 Temporomandibular joint disorders 3.76 × 10−7 3

DNAH6 Lack of coordination 7.93 × 10−10 2

DNHD1 Aseptic necrosis of bone 2.67 × 10−7 4

EFCAB5 Prolapse of vaginal walls 3.19 × 10−8 3

EPPK1 Phlebitis and thrombophlebitis of lower extremities 9.19 × 10−8 3

FER1L6 Muscular wasting and disuse atrophy 7.18 × 10−7 3 ✓

FLG2 Stiffness of joint 1.76 × 10−7 2

MYCBP2 Spasm of muscle 2.08 × 10−7 2 ✓

PPP1R13L Primary open-angle glaucoma 7.29 × 10−7 2 ✓

RGS12 Type 1 diabetes 6.48 × 10−8 5 ✓

RTKN2 Orthostatic hypotension 7.24 × 10−7 5

SCNN1D Cardiac conduction disorders 4.52 × 10−7 5

TGM6 Lipoma 2.77 × 10−7 4

TRDN Acquired toe deformities 3.90 × 10−7 3

WDR87 Ventral hernia 1.70 × 10−7 4

ZNF175 Tinnitus 3.24 × 10−10 3 ✓

ZNF334 Microscopic hematuria 1.69 × 10−7 3

List of genes among 97 pLOF-based gene burdens with phenotype associations at P < 10−6 in the PMBB discovery cohort that were most robust according to the DiCE approach, which integrates 
successful replication of the association with clinical and experimental evidence. For replication studies, gene–phenotype associations were evaluated for their robustness by interrogating REVEL-informed 
missense-based gene burdens and single variants in the same discovery PMBB cohort, and pLOF-based gene burdens, REVEL-informed missense-based gene burdens and single variants in an independent 
cohort of African Americans in the PMBB (the PMBB2 cohort), as well as in BioMe, DiscovEHR and the UKB. Targeted single variants that showed successful replication in the PMBB, PMBB2 and UKB were 
additionally analyzed in BioVU. Each gene–phecode association is labeled with the corresponding P value from logistic regression analyses in the discovery phase in the PMBB, as well as the number of total 
replications and existence of clinical/experimental evidence, fully detailed in Supplementary Table 17. Only associations with at least two total check marks in Supplementary Table 17, where each successful 
mode of replication in a particular biobank (for example, pLOF burden in BioMe) or the existence of clinical/experimental evidence is labeled with a checkmark, were deemed robust and therefore included 
here. Previously known associations were considered to represent positive controls. Positive control and new associations are each ranked alphabetically by gene name.
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Methods
Setting and study participants. All individuals who were recruited for the PMBB 
are patients of clinical practice sites of the University of Pennsylvania Health 
System. Appropriate consent was obtained from each participant regarding storage 
of biological specimens, genetic sequencing, access to all available EHR data 
and permission to recontact for future studies. The study was approved by the 
Institutional Review Board of the University of Pennsylvania and complied with 
the principles set out in the Declaration of Helsinki.

In addition to our robustness validation analyses within the PMBB, replication 
analyses were conducted using the WES dataset from an additional set of 
independent individuals of African American ancestry in the PMBB (PMBB2), 
BioMe, DiscovEHR, UKB, as well as imputed genotype data in BioVU, for 
evaluation of the robustness of gene–phenotype associations identified in the 
PMBB. For replication analyses in BioMe, DiscovEHR and BioVU, each study was 
approved by the institutional review board in the institution of each respective 
biobank. Access to the UKB for this project was from application 32133.

Genetic sequencing. This PMBB study dataset included a subset of 11,451 
individuals in the PMBB who have undergone WES. For each individual, we 
extracted DNA from stored buffy coats and then obtained exome sequences 
generated by the Regeneron Genetics Center. These sequences were mapped 
to GRCh37 as previously described7. Furthermore, for subsequent phenotypic 
analyses, we removed samples with low exome sequencing coverage (less than 
75% of targeted bases achieving 20× coverage), high missingness (greater than 
5% of targeted bases), high heterozygosity, dissimilar reported and genetically 
determined sex, genetic evidence of sample duplication, and cryptic relatedness 
(closer than third-degree relatives), leading to a total of 10,900 individuals.

For replication studies in PMBB2, we interrogated an additional 6,935 
individuals of African American ancestry in the PMBB who were exome sequenced 
by the Regeneron Genetics Center. We focused our replication efforts on 6,432 
individuals after removing samples with poor genotype quality, individuals closer 
than third-degree relatives and those with dissimilar reported and genetically 
determined sex. These sequences were mapped to GRCh38.

For replication studies in BioMe, we interrogated 6,470 individuals of 
African ancestry, 8,735 individuals of European ancestry and 8,784 individuals 
of Hispanic ancestry with WES data linked to EHR diagnosis phenotypes after 
removing samples with poor genotype quality, individuals closer than third-degree 
relatives and those with dissimilar reported and genetically determined sex. These 
sequences were mapped to GRCh38.

For replication studies in DiscovEHR, we interrogated 70,734 individuals of 
European ancestry who were exome sequenced on the IDT platform and a separate 
set of 59,133 individuals of European ancestry who were exome sequenced on 
the VCRome platform. We focused our replication efforts on 85,450 individuals 
(n = 48,413 for IDT; n = 37,037 for VCRome) after removing samples with poor 
genotype quality, individuals closer than third-degree relatives, those with 
dissimilar reported and genetically determined sex and those that self-identified as 
Hispanic/Latino. These sequences were mapped to GRCh38.

For replication studies in the UKB, we interrogated 34,629 individuals of 
European ancestry (based on reported genetic ancestry grouping from the 
UKB) with diagnosis codes according to the tenth revision of the International 
Classification of Diseases (ICD-10) available among the 49,960 individuals who 
had WES data as generated by the functional equivalence pipeline. We focused 
our replication efforts on 32,268 individuals after removing samples with poor 
genotype quality, individuals closer than third-degree relatives and those with 
dissimilar reported and genetically determined sex. The PLINK files for exome 
sequencing provided by the UKB were based on mappings to GRCh38.

For replication studies in BioVU, which has genotype but not large-scale WES 
data, we focused on a select group of single variants that showed replication in the 
PMBB, PMBB2 and/or UKB. We interrogated these variants for an association with 
specific phecodes in 10,456 individuals of African American ancestry and 55,944 
individuals of European ancestry after removing samples with poor genotype quality, 
individuals closer than third-degree relatives and those with dissimilar reported and 
genetically determined sex. These sequences were mapped to GRCh37.

Variant annotation and selection for association testing. For all cohorts analyzed, 
genetic variants were annotated using ANNOVAR (version 2018Apr16)44 as pLOF 
or missense variants according to the NCBI Reference Sequence database. These 
pLOF variants were defined as frameshift insertions/deletions, gain/loss of stop 
codon or disruption of canonical splice site dinucleotides. Predicted deleterious 
missense variants were defined as those with REVEL10 scores ≥ 0.5. MAF for each 
variant was determined per non-Finnish European, African and Latino minor 
allele frequencies reported by gnomAD (v2)45. pLOF and REVEL-informed 
missense variants were selected for gene burden testing or univariate association 
analyses for every ancestry group in each cohort according to the corresponding 
ancestry-specific MAF thresholds for each ancestry (rare variants with MAF ≤ 0.1% 
for gene burden testing; single variants with MAF > 0.1%).

Clinical data collection. ICD-9 and ICD-10 disease diagnosis codes and 
procedural billing codes, medications and clinical imaging and laboratory 

measurements were extracted from patient EHRs for the PMBB. ICD-10 encounter 
diagnoses were mapped to ICD-9 using the Center for Medicare and Medicaid 
Services 2017 General Equivalency Mappings (https://www.cms.gov/Medicare/
Coding/ICD10/2017-ICD-10-CM-and-GEMs.html) and manual curation. 
Phenotypes for each individual were then determined by mapping ICD-9 codes 
to distinct disease entities (phecodes) with Phecode Map 1.2 using the R package 
‘PheWAS’ 46. Participants were determined as having a certain disease phenotype if 
they had the corresponding ICD diagnosis on two or more dates, while phenotypic 
controls consisted of individuals who never had the ICD code. Individuals with 
an ICD diagnosis on only one date as well as individuals under control exclusion 
criteria based on PheWAS phenotype mapping protocols were not considered in 
statistical analyses.

All laboratory values measured in the outpatient setting were extracted for 
participants from the time of enrollment in PMBB until 20 March 2019; all units 
were converted to their respective clinical traditional units. The minimum, 
median and maximum measurements of each laboratory measurement were 
recorded for each individual and used for all association analyses. Inpatient 
and outpatient echocardiography measurements were extracted if available for 
participants from 01 January 2010 until 09 September 2016; outliers for each 
echocardiographic parameter (less than Q1 − 1.5 × interquartile range (IQR) or 
greater than Q3 + 1.5 × IQR) were removed. Similarly, the minimum, median and 
maximum values for each parameter were recorded for each participant and used 
for association analyses.

ICD-9 and ICD-10 codes were similarly mapped to phecodes in PMBB2, 
BioMe, DiscovEHR and BioVU for replication studies. For the UKB, we used the 
provided ICD-10 disease diagnosis codes for replication studies, and individuals 
were determined to have a certain disease phenotype if they had one or more 
encounters for the corresponding ICD diagnosis, given the lack of individuals 
with more than two encounters per diagnosis, while phenotypic controls consisted 
of individuals who never had the ICD code. Individuals under control exclusion 
criteria based on PheWAS phenotype mapping protocols were not considered in 
statistical analyses.

Association studies. A PheWAS approach was used to determine the phenotypes 
associated with rare (MAF ≤ 0.1% in gnomAD) pLOF variants carried by 
individuals in the PMBB for the discovery experiment47. Each disease phenotype 
was tested for an association with each gene burden or single variant using a 
logistic regression model adjusted for age, age squared, sex and the first ten 
principal components (PCs) of genetic ancestry. We used an additive genetic 
model to collapse variants for each gene using the fixed threshold approach48. 
Given the high percentage of individuals of African ancestry present in the 
discovery PMBB cohort, association analyses were performed separately in 
European (n = 8,198) and African (n = 2,172) genetic ancestries and combined with 
inverse-variance-weighted meta-analysis. Only genes with at least 25 carriers of 
pLOF variants were analyzed in the discovery analysis (n = 1,518). Our association 
analyses considered only disease phenotypes with at least 20 cases, leading to the 
interrogation of 1,000 total phecodes. All association analyses were completed 
using R (version 3.3.1). Power analyses were conducted using QUANTO  
(version 1.2.4)49.

We further evaluated the robustness of our gene–phenotype associations 
in the same PMBB discovery cohort by (1) associating the aggregation of rare 
(MAF ≤ 0.1%) predicted deleterious missense variants in gene burden association 
tests and (2) testing pLOF variants and predicted deleterious missense variants 
with MAF > 0.1 in univariate association tests. We ensured that individuals 
were nonoverlapping across rare pLOF variants and rare deleterious missense 
and single variant groups. Rare deleterious missense gene burdens and single 
variants were analyzed for an association with the specific phenotype identified 
in the pLOF-based gene burden discovery, together with related phenotypes in 
their corresponding phecode families (integer part of phecode). For example, to 
replicate an association of a gene burden with hypothetical phecode 123.45, we 
associated other variants in the same gene with phecode 123.45, as well as other 
related phenotypes under the phecode family 123 (for example, 123.6). Notably, 
we checked for the presence of mutual carriers between pLOF-based gene burdens 
for each gene and subsequently interrogated missense-based gene burdens or 
single variants due to linkage disequilibrium and/or rare chance and only reported 
replications for which the significant associations among phenotypes were not 
being driven by mutual carriers. All association studies in the PMBB were based on 
a logistic regression model adjusted for age, age squared, sex and the first ten PCs 
of genetic ancestry.

Additionally, we replicated our findings in PMBB2, BioMe, DiscovEHR and 
UKB for genes of interest using pLOF-based gene burden, REVEL-informed 
missense-based gene burden and/or univariate association analyses from the 
discovery phase in the PMBB. A specific set of single variants was further 
replicated in BioVU. Association statistics were calculated similarly to the PMBB, 
such that each disease phenotype was tested for an association with each gene 
burden or single variant using a logistic regression model adjusted for age, age 
squared, sex and the first ten PCs of genetic ancestry. In BioMe, the summary 
statistics obtained from running the logistic regression model separately in 
individuals of European, African and Hispanic ancestry were analyzed in the 
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meta-analysis. In DiscovEHR, the summary statistics obtained from running the 
logistic regression model separately in individuals of European ancestry on the 
IDT compared with VCRome platforms were analyzed in the meta-analysis. In 
BioVU, the summary statistics obtained from running the logistic regression model 
separately in individuals of European and African ancestry were analyzed in the 
meta-analysis. All association analyses for the PMBB, PMBB2, BioMe, DiscovEHR, 
UKB and BioVU were completed using R (version 3.3.1 or later).

Undercalling of variants in the UK Biobank. Given the undercalling of variants 
largely limited to ~3.25% of the exome target regions in the functional equivalence 
pipeline data, we found that 3 of the 97 genes that had associations with P < 10−6 
from the discovery phase overlapped with the undercalled exonic regions, namely 
CES5A, CYP2D6 and ZC3H3. While all other analyses in this study included 
variants with less than 5% missingness, we included variants with a call rate of 
at least 65% for these three genes, with the understanding that undercalling per 
variant is random for each individual.

Statistical analyses of clinical measurements. To compare available 
measurements for echocardiographic parameters and serum laboratory values 
between carriers of predicted deleterious variants and genotypic controls in the 
PMBB, we utilized linear regression adjusted for age, age squared, sex and the 
first ten PCs of genetic ancestry in individuals of European ancestry only. These 
analyses were conducted with the minimum, median and maximum values as the 
dependent variable for each echocardiographic parameter and clinical lab measure. 
All statistical analyses, including PheWAS, were completed using R (version 3.3.1).

Chart review to validate robust gene–phenotype associations. To confirm 
our curated list of robust exome-by-phenome-wide significant associations, we 
performed manual chart review of EHR data for each carrier of rare pLOF variants 
in genes that showed at least one mode of replication in any cohort. Importantly, 
for each gene, we aimed to adjudicate the diagnoses of carriers who were flagged 
as cases for the relevant associated phenotype. We removed associations for which 
chart review reduced the prevalence of the diagnosis among carriers and thus 
changed the association to P > 10−6. Furthermore, we removed associations for 
which chart review could not identify a common underlying etiology among all 
cases for the diagnosis, paying special attention to phecodes that grouped ‘other’ 
diagnoses that did not fit into disease-specific ICD codes (for example, ‘other 
diseases of blood and blood-forming organs’).

We discovered, on chart review, that individuals with the phecode 
‘hypertrophic obstructive cardiomyopathy’ or ‘other hypertrophic cardiomyopathy’ 
in the PMBB were participants with HCM who were being assigned one of the 
codes due to the lack of a single ICD diagnosis code for HCM. Thus, we defined a 
new phenotype for HCM encompassing cases for either phecode, and we repeated 
the association with the pLOF gene burdens of MYBPC3 (positive control) and 
BBS10 (new), confirming their associations as exome-by-phenome-wide significant 
(Supplementary Table 22).

Analysis of publicly available expression datasets. We interrogated microarray 
and RNA-seq data publicly available on the NCBI GEO platform (https://www.
ncbi.nlm.nih.gov/geo/)50. To investigate the new association between CILP and 
aortic ectasia, we interrogated 11 different microarray and RNA-seq datasets of 
human fibroblasts from various tissues treated with TGF-β (GSE1724, GSE65069, 
GSE64192, GSE39394, GSE79621, GSE68164, GSE97833, GSE97823, GSE135065, 
GSE125519 and GSE40266). Differential expression for each dataset was 
interrogated using the GEO2R software using a moderated t statistic. Meta-analysis 
of differential expression across the datasets was achieved using the Fisher’s 
combined probability test and visualized using the R package ‘MetaVolcanoR 1.0.1’. 
Identification of the top 1% of differentially expressed genes across all datasets was 
achieved using the Topconfects method51.

We also analyzed microarray data from muscle biopsies in participants with 
tibial muscular dystrophy compared to controls (GSE42806) to validate the new 
association between MYCBP2 and muscle spasms. Differential expression was 
interrogated using the GEO2R software via a moderated t statistic.

In silico analyses for PPP1R13L expression in ocular tissues. To understand 
the functional relevance of PPP1R13L in the eye, we evaluated its expression in 
human ocular tissues using the publicly available OTDB (https://genome.uiowa.
edu/otdb/)52. The OTDB consists of gene expression data for eye tissues from 20 
normal human donors, generated using Affymetrix Human Exon 1.0 ST arrays 
and described as probe logarithmic intensity error values, where individual gene 
expression values are normalized with its expression in other tissues.

Gene expression in DBA/2J mouse ocular tissues. We assessed the gene 
expression of Ppp1r13l in mouse ocular tissues using the publicly available 
Glaucoma Discovery Platform (http://glaucomadb.jax.org/glaucoma). This 
platform provided an interactive way to analyze RNA-seq data obtained from 
RGCs isolated from the retina and ONH of a 9-month-old female D2 mouse, 
which is an age-dependent model of ocular hypertension/glaucoma, and 
an D2-Gpnmb+ mouse, which does not develop high IOP/glaucoma53. For 

transcriptomic studies, four distinct groups were compared based on axonal 
degeneration and gene expression patterns. The transcriptome of D2 group 1 
was identical to the control strain (D2-Gpnmb+), while D2 groups 2–4 exhibited 
increasing levels of molecular changes relevant to axonal degeneration when 
compared to the control group. We used the Datgan software to assess the 
differential expression of Ppp1r13l in the retina54.

Immunolocalization of PPP1R13L in human retina. To study the localization 
of PPP1R13L protein in different retinal layers of the human eye, we performed 
immunofluorescence on formalin-fixed paraffin-embedded sections (n = 3) 
obtained from normal cadaver eyes of a 68-year-old donor with a commercially 
available antibody, anti-PPP1R13L (51141-1-AP, Proteintech). Antigen retrieval 
was performed in 1× citrate buffer (Life Technologies) warmed to 95 °C for 30 min. 
Sections were allowed to cool to room temperature and subsequently blocked 
in 10% normal goat serum with 1% BSA in 1× TBS buffer for 1 h. The retinal 
distribution of PPP1R13L protein was visualized by incubating the retinal section 
with rabbit polyclonal anti-PPP1R13L antibody at a 1:300 dilution overnight 
at 4 °C, followed by chicken anti-rabbit IgG conjugated with Alexa Fluor 594 
(A21442, Life Technologies) at a 1:3,000 dilution. Nuclei were stained with the use 
of Vectashield DAPI in the mounting medium. The images were captured using 
a Zeiss Imager Z1 fluorescence microscope equipped with AxioVS40 software 
(version 4.8.1.0).

Human induced pluripotent stem cell-derived retinal ganglion cell 
cultures. The human iPSCs were generated from keratinocytes or blood cells 
via polycistronic lentiviral transduction (Human STEMCCA Cre-Excisable 
constitutive polycistronic (OKS/L-Myc) Lentivirus Reprogramming Kit, Millipore) 
and characterized with a human embryonic stem/iPS cell pluripotency PCR with 
reverse transcription (RT–PCR) kit55. The iPSC-RGCs for our studies were derived 
using small molecules to inhibit bone morphogenetic protein, TGF-β (SMAD) and 
Wnt signaling to differentiate RGCs from iPSCs. The iPSCs were differentiated into 
pure iPSC-RGCs with structural and functional features characteristic of native 
RGCs based on a previous protocol56.

Evaluating oxidative stress in induced pluripotent stem cell-derived 
retinal ganglion cells. iPSC-RGCs were incubated with increasing 
amounts of H2O2 overnight before replacing the cultures with complete 
medium. The cells were collected 24 h after the H2O2 treatment, and levels 
of PPP1R13L transcripts were assessed using quantitative RT–PCR and 
gene expression primers Fwd-5′-TGCCCCAATTCTGGAGTAGG-3′ and 
Rev-5′-CGGCACGTGGACACAGATT-3′ following previously established 
protocols57. Mean expression levels (± s.e.m.) were calculated by analyzing at 
least three independent samples with replica reactions and were presented on an 
arbitrary scale that represents the expression over the housekeeping gene ACTB. 
Relative gene expression was quantified using the comparative Ct method. 
The relative gene expression was compared to an untreated control to obtain 
normalized gene expression. A two-tailed unpaired Student’s t-test was used for 
statistical analysis.

Single-cell RNA sequencing of human pancreatic islets in type 1 diabetes and 
controls. Pancreatic islets were procured from the Human Pancreas Analysis 
Program consortium under the Human Islet Research Network (https://
hirnetwork.org/) with approval from the University of Florida Institutional 
Review Board (201600029) and the United Network for Organ Sharing. A legal 
representative for each donor provided informed consent before organ retrieval. 
For T1D diagnosis, medical charts were reviewed and C-peptide was measured 
in accordance with the American Diabetes Association guidelines, leading to 
five individuals with T1D and six control individuals. The individuals with T1D 
(50% female) had a median age of 29.5 years and median body mass index (BMI) 
of 21.25. The control individuals (60% female) had a median age of 13 years and 
median BMI of 17.3. All individuals were of European ancestry. Organs were 
recovered and processed as previously described58. Pancreatic islets were cultured 
and dissociated into single cells as previously described59. Total dissociated cells 
were used for single-cell capture for each of the donors.

The Single Cell 3′ Reagent Kit (v2 or v3) was used for generating single-cell 
RNA-seq data. About 3,000 cells were targeted for recovery for each donor. All 
libraries were validated for quality and size distribution using a BioAnalyzer 
2100 (Agilent) and quantified using Kapa (Illumina). For samples prepared using 
the Single Cell 3′ Reagent Kit v2, the following chemistry was performed on an 
Illumina HiSeq 4000: read 1: 26 cycles; i7 index: 8 cycles; i5 index: 0 cycles; and 
read 2: 98 cycles. For samples prepared using the Single Cell 3′ Reagent Kit v3, 
the following chemistry was performed on an Illumina HiSeq 4000: read 1: 28 
cycles; i7 index: 8 cycles; i5 index: 0 cycles; and read 2: 91 cycles. Cell Ranger 
2.1.0 (10x Genomics) was used for bcl2fastq conversion using the command 
‘cellranger mkfastq --id = --run = --csv = --localmem = 64 --localcores = 30’. Cell 
Ranger 2.1.0 was used for aligning, filtering, counting and cell calling with the 
command ‘cellranger count --id = --transcriptome = --fastqs = --localmem = 64 
--localcores = 35’. Samples were aggregated using Cell Ranger 2.1.0 using the 
command ‘cellranger aggr --id = --csv = ’.
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Seurat 3.0.2 (https://satijalab.org/seurat/)60 was used for filtering, uniform 
manifold approximation and projection (UMAP) generation and initial clustering. 
Genes were kept that were in 0.01% of cells (three cells), resulting in 74% of genes 
remaining for analysis (24,986 of 33,694 genes). Cells with at least 200 genes were 
kept; however, all cells had at least 200 genes, so this filtering did not eliminate 
any of the 35,134 cells. nFeature, nCount, percent.mt, nFeature versus nCount and 
percent.mt versus nCount plots were generated to ascertain the lenient filtering 
criteria of 200 > nFeature < 7,500, percent.mt < 30 and nCount < 100,000, which 
led to the filtering out of 66 cells (35,066 cells remaining). Data were then log 
normalized, and the top 2,000 variable genes were detected using the ‘vst’ selection 
method. The data were then linearly transformed, and principal-component 
analysis (PCA) was carried out on the scaled data, using the 2,000 variable genes 
as input. To determine the dimensionality of the data (that is, how many PCs 
to choose when clustering), we used two approaches: (1) a Jackstraw-inspired 
resampling test that compares the distribution of P values of each PC against a null 
distribution and (2) an elbow plot that displays the standard deviation explained by 
each PC. Based on these two approaches, 14 PCs with a resolution of 2 were used 
to cluster the cells, and nonlinear dimensionality reduction (UMAP) was used with 
14 PCs to visualize the dataset.

DoubletFinder (v2.0)61 was used to demarcate and remove potential doublets 
in the data as previously described, with the following details: paramSweep_v3, 
doubletFinder_v3, and 14 PCs were used to determine the neighborhood size 
(pK; no ground-truth). The following parameters were used when running 
doubletFinder_v3: PCs = 14, pN = 0.25, pK = 0.005, nExp = nEx_poi.adj and 
sct = FALSE. The doublets had a higher nCount than the singlets identified using 
this method, and the 807 doublets were removed from further analyses.

Following doublet removal, the raw data for the remaining 34,259 cells was 
log normalized, the top 2,000 variable genes were detected, the data underwent 
linear transformation and PCA was carried out, as described above. Both the 
Jackstraw-inspired resampling test and an elbow plot of the standard deviation 
explained by each PC were used to determine the optimal dimensionality of the 
data, as described above. Based on these two approaches, 11 PCs with a resolution 
of 1.2 were used to cluster the cells, and UMAP was used with 11 PCs to visualize 
the 28 clusters detected.

Garnett was used for initial cell classification as previously described62. In 
brief, a cell-type marker file with 17 different cell types was compiled using 
various resources59,60,63, and this marker file was checked for specificity using the 
‘check_markers’ function in Garnett by checking the ambiguity score and the 
relative number of cells for each cell type. A classifier was then trained using the 
marker file, with ‘num_unknown’ set to 150, and this classifier was then used 
to classify cells and cell-type assignments were extended to nearby cells using 
‘clustering-extended type’/Louvain clustering.

TooManyCells 2.0.0.0 was then used to cluster and visualize the 34,259 single 
cells, as previously described64. Briefly, the raw data from the 34,259 cells were 
not filtered and were normalized by total count and gene normalized by median 
count followed by frequency–inverse document frequency (tf–idf) using the flags 
--normalization BothNorm and --no-filter. The ‘clustering-extended type’ cell 
labels from Garnett, as well as the demarcation of canonical cell markers, were 
used to identify broad classes of cell types found within the pancreas, of which we 
focused on four: beta, stellate, endothelial and immune cells.

Differential genes were found using edgeR (v3.24.3) through TooManyCells 
with the normalization ‘NoneNorm’ to invoke edgeR single-cell preprocessing, 
including normalization and filtering. Briefly, edgeR fits normalized expression 
data to a negative binomial model and uses an exact test with a false discovery rate 
control to determine differentially expressed genes65.

Single-cell RNA sequencing of mouse aorta. All animal experiments were 
performed following protocols approved by the Institutional Animal Care and 
Use Committee at Baylor College of Medicine in accordance with the guidelines 
of the National Institutes of Health. The Center for Comparative Medicine at 
Baylor College of Medicine monitors the environmental conditions in the animal 
husbandry rooms. All mice were housed in standard ventilated cages that each had 
a floor area of 65 square inches and contained a maximum of four mice. Room 
temperatures were maintained at 70 ± 2 °F. Normal humidity for animal holding 
rooms ranged from 30% to 70%. The standard light timer was set on a 14-h light 
cycle with the lights coming on at 06:00 and off at 20:00.

Ascending aortic samples were harvested from Mef2c-Cre;Rosa26RmT/mG male 
mice (n = 5) and were pooled in Hanks’ Balanced Salt Solution (HBSS; 14175095, 
Thermo Fisher Scientific) with 10% FBS. Extra-aortic tissues were removed, 
and the aortic tissues were cut into small pieces. To digest the aortas, samples 
were subsequently incubated with an enzyme cocktail (3 mg ml−1 collagenase 
type II (LS004176, Worthington); 0.15 mg ml−1 collagenase type XI (C7657, 
Sigma-Aldrich); 0.24 mg ml−1 hyaluronidase type I (H3506, Sigma-Aldrich); 
0.1875 mg ml−1 elastase (LS002290, Worthington); 2.38 mg ml−1 HEPES (H4034, 
Sigma-Aldrich)) in HBSS with Ca2+/Mg2+ (14025092, Thermo Fisher Scientific) 
for 60 min at 37 °C. The cell suspension was filtered through a 40-μm cell 
strainer (CLS431750-50EA, Sigma-Aldrich), centrifuged at 300g for 10 min and 
resuspended using cold HBSS (14175095) with 5% FBS. Cells were stained with 
DAPI and were sorted to select viable cells (≥95% viability) by flow cytometry 
(FACS Aria III, BD Biosciences).

The cells were dispensed onto the Chromium Controller (10x Genomics) 
and indexed single-cell libraries were constructed by a Chromium Single Cell 
3′ v2 Reagent Kit (10x Genomics). cDNA libraries were then sequenced in a 
paired-end fashion on an Illumina NovaSeq 6000. Raw FASTQ data was aligned 
by Cell Ranger 3.0 with GRCh38. Mapped unique molecular identifier (UMI) 
counts were imported into Seurat 3.1.4 and built into Seurat objects using the 
‘CreateSeuratObject’ function. Cells expressing less than 200 or more than 5,000 
genes were filtered out for exclusion of non-cell or cell aggregates. Cells with more 
than 10% mitochondrial genes were also excluded. Data were then normalized 
and processed into scaled data. PCA and nonlinear dimensional reduction using 
t-distributed stochastic neighbor embedding were performed to create clusters and 
for data visualization. The ‘FindAllMarkers’ function in Seurat was used to identify 
the conserved marker genes in each cluster.

Single-cell RNA-seq of human aorta. The protocol for collecting human aortic 
tissue samples for the scRNA-seq study was approved by the Institutional Review 
Board at Baylor College of Medicine. Written informed consent was provided 
by all participants before enrollment. All experiments conducted with human 
tissue samples were performed in accordance with the relevant guidelines and 
regulations. Ascending aortic samples were acquired from three controls (two 
females and one male, heart transplant recipient or lung transplant donor) and 
eight individuals with an ascending thoracic aortic aneurysm (four females and 
four males). For each sample, a piece of aortic tissue (1–2 cm2) was torn into thin 
layers and cut into small pieces in HBSS (without Ca2+ and Mg2+; Gibco) with  
10% FBS. Small pieces of tissue were then moved to an enzyme cocktail prepared 
with 3 mg ml−1 collagenase type II (LS004176, Worthington Biochemical),  
0.15 mg ml−1 collagenase type XI (H3506, Sigma), 0.25 mg ml−1 soybean trypsin 
inhibitor (LS003571, Worthington), 0.1875 mg ml−1 elastase lyophilized (LS002292, 
Worthington), 0.24 mg ml−1 hyaluronidase type I (H3506, Sigma) and 2.38 mg ml−1 
HEPES (H4034, Sigma) in HBSS (with Ca2+ and Mg2+) (14025092, Thermo Fisher 
Scientific) and were digested in a 37˚C water bath for 1–2 h. Tissue dissociation 
was examined under a microscope. Cell suspensions were collected by using a 
40-µm cell strainer (CLS431750-50EA, Corning), centrifuged at 300g for 10 min 
and resuspended in HBSS (without Ca2+ and Mg2+; 14175095, Thermo Fisher) 
with 5% FBS, followed with incubation on ice for 30 min. Cells were then stained 
by using a live and dead cell kit (L3224, Thermo Fisher) and were submitted for 
flow cytometry (BD) for the collection of live singlet cells. The living cell rate 
was further examined under a microscope by using Trypan blue (T8154, Sigma) 
staining.

Single-cell suspensions were submitted to the 10x Genomics Chromium System 
(10x Genomics), followed by the construction of 3′ gene expression v3 libraries 
and sequencing on an Illumina NovaSeq 6000. Raw FASTQ data alignment was 
processed using Cell Ranger 3.0, with GRCh38 as a reference. Mapped UMI counts 
were loaded into R for further analysis. The single-cell sequencing data were 
filtered using Seurat 3.0 with the following criteria: gene count per cell of >200 
and <4,000 (or 5,000), percentage of mitochondrial genes < 10%, and no HBB 
gene detected in the cell. Data were then normalized and processed into scale data, 
linear dimensional reduction, cluster finding and nonlinear dimensional reduction 
for visualization according to the Seurat manual. To identify clusters in multiple 
combined datasets, we performed additional integration after normalization and 
before scaling. The conserved (marker) genes for each cluster were identified using 
the function ‘FindAllMarkers’ in Seurat. For reclustering, the UMI counts of cells 
of interest were extracted and analyzed similarly to clusters identified in multiple 
combined datasets.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All summary statistics for significant gene–phenotype associations from the 
discovery phase in the PMBB, as well as significant replications from each 
replication cohort are fully detailed in Supplementary Tables 1–16. Data for the 
individual rare pLOF and missense variants in significant genes that were used 
for gene burden analyses in the PMBB discovery cohort are also included in 
Supplementary Tables 23 and 24. In addition, a list of all of the single variants 
that were used for replication analyses across all the cohorts are provided in 
Supplementary Table 25. Each variant in Supplementary Tables 23–25 is annotated 
with information regarding genomic location, variant effect, amino acid change, 
REVEL score (for missense) and MAF in gnomAD, as well as in the PMBB 
discovery cohort. Additionally, up-to-date summary data for genetic variants 
captured using WES in the PMBB can be accessed via the PMBB Genome Browser 
(https://pmbb.med.upenn.edu/allele-frequency/). Individual-level data are not 
publicly available due to research participant privacy concerns; however, requests 
from accredited researchers for access to individual-level data relevant to this 
manuscript can be made by contacting the corresponding author. Additionally, 
public expression datasets were obtained from the OTDB (https://genome.uiowa.
edu/otdb/), Glaucoma Discovery Platform (http://glaucomadb.jax.org/glaucoma/), 
and NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/). From NCBI GEO, we 
interrogated 11 different microarray and RNA-seq datasets of human fibroblasts 
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from various tissues treated with TGF-β (GSE1724, GSE65069, GSE64192, 
GSE39394, GSE79621, GSE68164, GSE97833, GSE97823, GSE135065, GSE125519 
and GSE40266), as well as microarray data from muscle biopsies in participants 
with tibial muscular dystrophy (GSE42806).

References
 44. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of 

genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, 
e164 (2010).

 45. Karczewski, K. J. et al. The mutational constraint spectrum quantified from 
variation in 141,456 humans. Nature 581, 434–443 (2020).

 46. Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: data analysis and 
plotting tools for phenome-wide association studies in the R environment. 
Bioinformatics 30, 2375–2376 (2014).

 47. Denny, J. C. et al. Systematic comparison of phenome-wide association study 
of electronic medical record data and genome-wide association study data. 
Nat. Biotechnol. 31, 1102–1110 (2013).

 48. Price, A. L. et al. Pooled association tests for rare variants in 
exon-resequencing studies. Am. J. Hum. Genet. 86, 832–838 (2010).

 49. Gauderman, W. J., Morrison, J. M. & Morrison, W. G. J. QUANTO 1.1: a 
computer program for power and sample size calculations for 
genetic-epidemiology studies. http://hydra.usc.edu/gxe (2006).

 50. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI 
gene expression and hybridization array data repository. Nucleic Acids Res. 
30, 207–210 (2002).

 51. Harrison, P. F., Pattison, A. D., Powell, D. R. & Beilharz, T. H. Topconfects: a 
package for confident effect sizes in differential expression analysis provides a 
more biologically useful ranked gene list. Genome Biol. 20, 67 (2019).

 52. Wagner, A. H. et al. Exon-level expression profiling of ocular tissues. Exp. Eye 
Res. 111, 105–111 (2013).

 53. Libby, R. T. et al. Inherited glaucoma in DBA/2J mice: pertinent disease 
features for studying the neurodegeneration. Vis. Neurosci. 22, 637–648 
(2005).

 54. Howell, G. R., Walton, D. O., King, B. L., Libby, R. T. & John, S. W. Datgan, a 
reusable software system for facile interrogation and visualization of complex 
transcription profiling data. BMC Genomics 12, 429 (2011).

 55. Yang, W. et al. Generation of iPSCs as a pooled culture using magnetic 
activated cell sorting of newly reprogrammed cells. PLoS ONE 10, e0134995 
(2015).

 56. Chavali, V. R. M. et al. Dual SMAD inhibition and Wnt inhibition enable 
efficient and reproducible differentiations of induced pluripotent stem cells 
into retinal ganglion cells. Sci. Rep. 10, 11828 (2020).

 57. Verkuil, L. et al. SNP located in an AluJb repeat downstream of TMCO1, 
rs4657473, is protective for POAG in African Americans. Br. J. Ophthalmol. 
103, 1530–1536 (2019).

 58. Campbell-Thompson, M. et al. Network for pancreatic organ donors with 
diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes 
Metab. Res. Rev. 28, 608–617 (2012).

 59. Wang, Y. J. et al. Single-cell transcriptomics of the human endocrine 
pancreas. Diabetes 65, 3028–3038 (2016).

 60. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating 
single-cell transcriptomic data across different conditions, technologies and 
species. Nat. Biotechnol. 36, 411–420 (2018).

 61. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet 
detection in single-cell RNA-sequencing data using artificial nearest 
neighbors. Cell Syst. 8, 329–337 (2019).

 62. Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables 
rapid annotation of cell atlases. Nat. Methods 16, 983–986 (2019).

 63. Baron, M. et al. A single-cell transcriptomic map of the human and mouse 
pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 
346–360 (2016).

 64. Schwartz, G. W. et al. TooManyCells identifies and visualizes relationships of 
single-cell clades. Nat. Methods 17, 405–413 (2020).

 65. Wang, T., Li, B., Nelson, C. E. & Nabavi, S. Comparative analysis of 
differential gene expression analysis tools for single-cell RNA-sequencing 
data. BMC Bioinformatics 20, 40 (2019).

Acknowledgements
The PMBB is funded by the Perelman School of Medicine at the University of 
Pennsylvania, a gift from the Smilow family, and the National Center for Advancing 
Translational Sciences of the National Institutes of Health under CTSA Award Number 
UL1TR001878. We thank D. Birtwell, H. Williams, P. Baumann and M. Risman for 
informatics support regarding the PMBB. We thank the staff of the Regeneron Genetics 
Center for whole-exome sequencing of DNA from PMBB participants. We thank S. 
Rathi for help with the real-time PCR experiment on iPSC-RGCs and J. He for help with 
iPSC-RGC cultures. We thank S. Dudek for assistance with the PMBB Genome Browser. 
Research reported in this paper was supported by grants from the National Human 
Genome Research Institute of the National Institutes of Health under award number 
F30HG010442 (to J.P.); the National Eye Institute of the National Institutes of Health 
under award number R21EY028273-01A1, BrightFocus Foundation, Lisa Dean Moseley 
Foundation and Research to Prevent Blindness, F.M. Kirby Foundation and The Paul and 
Evanina Bell Mackall Foundation Trust (to V.R.M.C); American Heart Association SFRN 
in Vascular Disease under award numbers 18SFRN33960114 and 18SFRN33960163 (to 
S.A.L. and A.D.) and National Institutes of Health under award number 1R01HL143359 
(to Y.H.S. and S.A.L.); Sarnoff Cardiovascular Research Foundation (to S.A.); Institute 
for Translational Medicine and Therapeutics Transdisciplinary Program in Translational 
Medicine and Therapeutics (to R.L.K.)

Author contributions
The study was conceived and designed by J.P., M.D.R and D.J.R. Association analyses for 
the study were conducted by J.P., A.M.L., X.Z., K.C., J.H.C., G.N., A.D., G.C., N.S.J., N.K., 
J.H.B, M.A.R.F., A.H.L. and A.E.J. Association data interpretation was performed by J.P., 
A.M.L., N.K., Y.B., A.V., J.C., S.M.D., T.L.E., A.E.J., R.D., M.D.R. and D.J.R. Chart review 
was conducted by J.P., S.A. and T.G.D. Experiments specific to PPP1R13L and glaucoma 
were performed by V.R.M.C. Single-cell RNA-seq of human pancreas was performed 
by M.F., A.N., K.H.K. and G.V. Single-cell RNA-seq of mouse and human aortae was 
performed by H.S., A.D., Y.L., C.Z., S.A.L. and Y.H.S. Data acquisition for association 
analyses was performed by J.P., X.Z., J.W., A.V., R.L.J., R.L.K., J.D.O., J.G.R., A.B., S.M.D., 
A.E.J., R.D., M.D.R. and D.J.R. The manuscript was written by J.P., M.D.R. and D.J.R., 
and revised by all authors.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41591-020-1133-8.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41591-020-1133-8.

Correspondence and requests for materials should be addressed to D.J.R.

Peer review information Michael Basson and Kate Gao were the primary editors on this 
article and managed its editorial process and peer review in collaboration with the rest of 
the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

NATuRE MEDiCiNE | www.nature.com/naturemedicine

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1724
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65069
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64192
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39394
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79621
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68164
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97833
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97823
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135065
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125519
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40266
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42806
http://hydra.usc.edu/gxe
https://doi.org/10.1038/s41591-020-1133-8
https://doi.org/10.1038/s41591-020-1133-8
https://doi.org/10.1038/s41591-020-1133-8
http://www.nature.com/reprints
http://www.nature.com/naturemedicine


LettersNature MediciNe

BA

100

101

102

103

104

0030020010

Heterozygous Carriers for Rare pLOFs

N
um

be
r 

of
 G

en
es

100

101

102

103

104

02510150

Homozygous Carriers for Rare pLOFs

N
um

be
r 

of
 G

en
es

Extended Data Fig. 1 | Distribution of number of carriers for rare predicted loss-of-function (pLOF) variants per gene in the Penn Medicine Biobank. 
a, Histogram plot for the distribution of number of heterozygous carriers for rare (MAF ≤ 0.1%) pLOF variants per gene in the Penn Medicine Biobank’s 
(PMBB) exome sequenced cohort. The x-axis represents number of heterozygous pLOF carriers per gene in bin widths of 10, and the log-scaled y-axis 
represents the number of genes with the x-axis-specified number of heterozygous carriers. b, Histogram plot for the distribution of number of homozygous 
carriers for rare pLOF variants per gene in the PMBB’s exome sequenced cohort. The x-axis represents number of homozygous pLOF carriers per gene in 
bin widths of one, and the log-scaled y-axis represents the number of genes with the x-axis-specified number of homozygous carriers.
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Extended Data Fig. 2 | Power analyses for association of gene burdens with at least 25 heterozygous carriers for rare pLOF variants with phenotypes of 
various case counts. Power analyses for association of gene burdens collapsing rare pLOF variants with 25 heterozygous carriers (allele frequency = 25/2N 
≈ 0.001, where N = 2172 (AFR) + 8198 (EUR)) with phenotypes having various case counts. Phenotype case counts range from 20 to 6500 to reflect the 
range of case counts for phecodes in the Penn Medicine Biobank discovery cohort, and the power of the gene burden association with each phenotype as a 
function of odds ratio (OR=exp(beta)) is plotted on separate lines per the plot legend.
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Extended Data Fig. 3 | Quantile-quantile plot of gene burden testing results from discovery phase of exome-by-phenome-wide association 
studies in the Penn Medicine Biobank. a, Quantile-quantile plot of p values from all exome-by-phenome-wide associations using gene burdens 
collapsing rare (MAF ≤ 0.1%) predicted loss-of-function (pLOF) variants per gene in the Penn Medicine Biobank (PMBB). The x-axis represents the 
expected –log10(p value) under the uniform distribution of p values. The y-axis represents the observed –log10(p value) from the discovery phase of the 
exome-by-phenome-wide gene burden association studies collapsing rare pLOF variants in the PMBB. Each point represents an association between 
one of 1518 gene burdens and one of 1000 phecodes via logistic regression. The solid line shows the relationship between the expected and observed 
p values under the uniform p value distribution. The dashed line represents the observed fit line between the 50th and 95th percentile of gene burden 
associations, and the slope of this line is λ∆95 = 1.558. b, AFR-specific QQ plot of p values from all exome-by-phenome-wide associations using gene 
burdens collapsing rare (MAF ≤ 0.1%) predicted loss-of-function (pLOF) variants per gene in the PMBB. Data is presented in a similar manner to panel 
A. The slope of the fitted line is the AFR-specific λ∆95 = 1.09. C) EUR-specific QQ plot of p values from all exome-by-phenome-wide associations using 
gene burdens collapsing rare (MAF ≤ 0.1%) predicted loss-of-function (pLOF) variants per gene in the PMBB. Data is presented in a similar manner to 
panel A. The slope of the fitted line is the EUR-specific λ∆95 = 1.251.
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Extended Data Fig. 4 | MYCBP2 is downregulated in tibial muscular dystrophy. a, Comparison of MYCBP2 expression levels in human distal lower 
extremity muscles in tibial muscular dystrophy (TMD; N=6 independent muscle samples) versus healthy controls (N=5 muscle samples). Data is 
presented as mean transformed signal intensity, and error bars denote SEM. Transformed signal intensity values were obtained from GEO Series 
GSE42806, which are baseline-transformed and MAS5.0-normalized signal intensities, and individual values are plotted overlaying the bar plot. Statistical 
comparison was based on a moderated t-statistic, and p values were adjusted by Benjamini & Hochberg (FDR) correction. b, Comparison of MYCBP2 
expression levels in each distal lower extremity muscle included in the comparison in Extended Data Fig. 4a. Data is presented as a bar plot showing mean 
fold change as compared to a single control sample, and individual values are plotted overlaying the bar plot. Fold changes were calculated based on 
inverse log-transformed signal intensity values from each lower extremity muscle, including extensor digitorum longus (N=2 independent TMD samples, 
2 independent control samples), tibialis posterior (N=1 TMD sample, 1 control sample), soleus (N=1 TMD sample, 1 control sample), and tibialis anterior 
(N=2 TMD samples, 1 control sample).
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Extended Data Fig. 5 | Functional validation for the association between PPP1R13L and primary open-angle glaucoma. a, Differential expression profile of 
Ppp1r13l transcript in mouse optic nerve head (ONH) with varying stages of intraocular pressure (IOP)-induced glaucoma. Data represent the fold change 
in Ppp1r13l expression between different stages of D2 mice (glaucoma, N=50 mice) and D2 Gpnmb+ samples (control, N=10 mice). b, Localization of 
PPP1R13L protein in the human retina. Shown is the distribution of PPP1R13L by immunohistochemical localization in the retina from normal 68-year-old 
donor eyes. Overlay of images from DAPI (blue; nuclei) and PPP1R13L (red) in adult human retinal layers are shown on the right. The left represents 
primary antibody control. Scale bars are shown in each image. The experiment was performed twice independently with consistent results. ONL, outer 
nuclear layer; OPL, outer plexiform layer; IPL, inner plexiform layer; GCL, ganglion cell layer. c, Relative expression of PPP1R13L transcript in response to 
oxidative stress in induced pluripotent stem cell-derived retinal ganglion cells (iPSC-RGCs). A two-tailed unpaired Student’s t test was used for statistical 
analysis, and significant p values are shown. Expression of PPP1R13L in iPSC-RGCs is shown under increasing concentrations of H2O2 treatment (N=3 
independent experiments per condition). Plotted are the mean fold changes in comparison to no H2O2, error bars represent standard error of the mean 
(SEM), and individual values are plotted overlaying the bar plot.
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Extended Data Fig. 6 | Single-cell RNA-seq of human pancreatic cells shows that RGS12 is not differentially expressed in pancreatic exocrine and 
endocrine cells, but is reduced in type 1 diabetic peri-islet macrophages. Comparison of RGS12 expression levels in type 1 diabetes (T1D) versus control in 
pancreatic beta (endocrine; N=2 T1D donors (410 cells), N=6 control donors (1573 cells)), endothelial (N=5 T1D donors (441 cells), N=6 control donors 
(166 cells)), stellate (exocrine; N=5 T1D donors (910 cells), N=6 control donors (356 cells)), and peri-islet immune (CD45+ macrophages; N=5 T1D 
donors (95 cells), N=4 control donors (40 cells)) cells based on single-cell RNA-seq. Differential expression of RGS12 in each cell type was determined 
by edgeR, which fits normalized expression data to a negative binomial model and uses an exact test with false discovery rate (FDR) control to determine 
differential expressed genes. Data is presented as bars representing mean normalized RGS12 expression and error bars representing standard error of the 
mean (SEM). Individual points are plotted overlaying their respective bar plots. Differential expression as determined by edgeR are displayed for each cell 
type as log2 fold change and p values adjusted by FDR correction.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | CILP is expressed in aortic adventitial fibroblasts, and is downregulated in human fibroblasts in response to treatment with 
TGF-β. a, t-SNE plot of aortic single cells in mice. Colors denote 6 cell types: smooth muscle cell (SMC), fibroblast, endothelial cell (EC), macrophage, 
stem cell, unknown. b, Relative expression of Cilp in all cells projected onto a t-SNE plot based on single-cell RNA-seq. The red arrows indicate where Cilp 
is expressed. c, t-SNE plot of aortic single cells in humans, with fibroblasts highlighted. d, Relative expression of CILP in all cells projected onto a t-SNE plot 
based on single-cell RNA-seq. The red box indicates where CILP is expressed. e,Volcano plot displaying differential expression of genes from meta-analysis 
of microarray and RNA-seq data for human fibroblasts treated with TGF-β (see Methods or the Reporting Summary for details about the datasets 
used). Meta-analysis of differential expression across the datasets was achieved using the Fisher’s combined probability test. The x-axis represents 
meta-analyzed log2(fold change), and the y-axis represents meta-analyzed –log10(p value). The top 1% of differentially expressed genes across all datasets 
are labeled in red (upregulation) or blue (downregulation).
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