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Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly population. To
accelerate the understanding of the genetics of AMD, we conducted a meta-analysis of genome-wide association studies
(GWAS) combining data from the International AMD Genomics Consortium AMD-2016 GWAS (16,144 advanced AMD
cases and 17,832 controls), AMD-2013 GWAS (17,181 cases and 60,074 controls), and new data on 4017 AMD cases and
14,984 controls from Genetic Epidemiology Research on Aging study. We identified 12 novel AMD loci near or within
C4BPA—CD55, ZNF385B, ZBTB38, NFKB1, LINC00461, ADAM19, CPN1, ACSL5, CSK, RLBP1, CLUL1, and LBP. We
then replicated the associations of the novel loci in independent cohorts, UK Biobank (5860 cases and 126,726 controls) and
FinnGen (1266 cases and 47,560 control). In general, the concordance in effect sizes was very high (correlation in effect size
estimates 0.89), 11 of 12 novel loci were in the expected direction, 5 were associated with AMD at a nominal significance
level, and rs3825991 (near gene RLBP1) after Bonferroni correction. We identified an additional 21 novel genes using a
gene-based test. Most of the novel genes are expressed in retinal tissue and could be involved in the pathogenesis of AMD
(i.e., complement, inflammation, and lipid pathways). These findings enhance our understanding of the genetic architecture
of AMD and shed light on the biological process underlying AMD pathogenesis.

Introduction

Age-related macular degeneration (AMD), a degenerative
disorder of the central retina, is the leading cause of central

vision loss in the elderly population in the Western world
[1–4]. AMD is classified as non-neovascular (dry AMD)
and neovascular (wet) AMD. For the population aged over
45 years, the global prevalence of AMD is 8.69%, with a
higher prevalence in Europeans (12.3%) [4]. It is estimated
that the number of AMD patients will be 196 million in
2020, rising to 288 million in 2040 [4].

AMD is highly heritable with heritability estimates
between 46 and 71% [5]. A recent genome-wide association
study (GWAS) from the International AMD Genomics
Consortium (IAMDGC) has identified 52 independent
variants across 34 loci [6]. Understanding the genetic con-
tributions for AMD is important to reveal insights into the
biological mechanisms of AMD, and discover potential
genetic variations for clinical diagnostic, predictive, and
therapeutic targets [6, 7].

Recent statistical methodology and application studies
have shown that multivariate GWAS can leverage multiple
input summary statistics of the same trait or genetically
correlated traits, and gain the power for identifying new
genes [8, 9]. Compared with the traditional meta-analysis
that assumes the input GWAS summary statistics are from
the same trait (a genetic correlation close to one) and are
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sensitive to sample overlap [10], the multiple trait analysis
of GWAS (MTAG) approach, a framework to generalize
the standard inverse-variance meta-analysis method, can
jointly analyze GWAS summary statistics from the same
trait or multiple correlated phenotypes, with or without
overlapping samples [8]. In this study, we identify novel
AMD loci using the state-of-the-art multivariate GWAS
method to combine several large AMD GWAS datasets.

Methods

Study overview

Our study design is displayed in Fig. 1. We conducted a
meta-analysis of GWASs based on the MTAG approach [8],
which generalizes the standard inverse-variance meta-
analysis method to jointly analyze GWAS summary
statistics with overlapping samples. We applied MTAG
to three input summary statistics: AMD-2016 GWAS [6]
and AMD-2013 GWAS [11] from the IAMDGC, and AMD
GWAS in Genetic Epidemiology Research on Aging
(GERA) study [12]. We then replicated the novel AMD
loci in independent datasets from the UKBB and FinnGen
studies.

International Age-related Macular Degeneration
Genomics Consortium

GWAS summary statistics: AMD-2016 GWAS and AMD-2013
GWAS

We downloaded two publicly available AMD summary
statistics from the IAMDGC: AMD-2016 GWAS and
AMD-2013 GWAS (web resources in the supplement)
[6, 11]. In the AMD-2016 GWAS, there are 16,144 cases
and 17,832 controls of European descent with P values and
directions available in the summary statistics. We used the
same method as mentioned in Burgess et al.’s study to
derive the beta coefficients and standard errors (SEs) for all
SNPs [13]. Briefly, the P values and directions of

associations from the summary statistics were used to cal-
culate z-scores. With the assumption that SE multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MAF� 1�MAFð Þp

should be a constant, where “MAF”
is the minor allele frequency, we estimated the constant
using the average estimations from 34 genome-wide sig-
nificant variants from Fritsche et al.’s study [6, 13]. The
constant was further used to calculate SEs and beta coeffi-
cients for other variants. The validity of the method was
also fully assessed in Burgess et al.’s study [13].

For the AMD-2013 GWAS, the GWAS summary sta-
tistics from 17,181 AMD cases and 60,074 controls were
used. We used the same method above to calculate the beta
coefficients and SEs for all variants.

Genetic Epidemiology Research on Aging (GERA)
study

The GERA cohort is a substudy of the longitudinal cohort
enrolled in the Kaiser Permanente Research Program on
Genes, Environment, and Health. The detailed description
of the study design can be found in the database of Geno-
types and Phenotypes (study accession: phs000674.v1.p1)
[12, 14]. In our authorized access data, 78,486 participants
have both phenotype and genotype data. We only included
self-reported whites for the following analysis.

We performed genotype quality control using PLINK
software (version 1.90 beta) [15]. For samples, we removed
individuals with >3% missing genotypes. For markers,
SNPs with call rate <95%, MAF < 0.01, and Hardy–
Weinberg equilibrium P < 1 × 10−6 were discarded. For
relatives, we calculated identity by descent using autosomal
SNPs and only kept one of any pair of individuals with pi-
hat > 0.2 for analysis. Michigan Imputation Server was used
for imputation (parameters: HRC reference panel, version
r1.1 2016; phasing, ShapeIT; population, EUR) [16]. SNPs
with imputation quality score > 0.3 and MAF > 0.01 were
retained for association analysis.

Macular degeneration cases were recorded in electronic
health record (EHR) system as International Classification
of Diseases, Ninth Revision (ICD-9) diagnosis codes
(362.5, 362.50, 362.51, 362.52, and 362.57). Finally, we

Fig. 1 Study design. The multivariate analysis of GWAS (MTAG), a
method to jointly analyze summary statistics, was applied to three
input summary statistics of AMD GWAS: AMD-2016 GWAS [6] and
AMD-2013 GWAS [11] from the International AMD Genomics

Consortium (IAMDGC), and AMD GWAS in Genetic Epidemiology
Research on Aging (GERA) study. The novel loci were then replicated
in the UK Biobank and FinnGen studies
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reported a GWAS on 4017 macular degeneration cases and
14,984 controls from the GERA cohort.

Replication datasets: UK Biobank and FinnGen study
age-related macular degeneration data

The UK Biobank project is a large-scale prospective cohort
study of half a million participants across the United
Kingdom, aged between 40 and 69 at the time of recruit-
ment (2006–2010) [17]. In our analysis, we only included
participants with written consent and of white-British
ancestry based on self-reported ethnicity and genetic prin-
cipal components [17, 18]. To control relatedness between
samples, we used a pruning method in PLINK software
(version 1.90 beta) to keep one of any pair of individuals
with pi-hat > 0.2. We identified 5860 AMD cases using the
following criteria: (1) ICD-9 or ICD-10 diagnosis codes
(3625 and H353); (2) responded “Macular degeneration” in
“eye problems/disorders” (Field 6148); (3) responded
“macular degeneration” in self-reported non-cancer illness
(Field 20002). We selected 126,726 “healthy” controls who
did not have serious eye diseases (Field 6148). The UKBB
genotype data and quality control procedures were descri-
bed previously [17]. In our association analysis, we only
included SNPs with MAF > 0.01 and imputation quality
score > 0.3.

The FinnGen study (https://www.finngen.fi/en) is a
nation-wide study launched in Finland in 2017. The Finn-
Gen study combines both genetic information and health
care data to improve personalized health care. We down-
loaded the available summary statistics from the public
release of FinnGen data freeze 2 results for 1266 AMD
cases (wet or dry macular degeneration) and 47,560 con-
trols. The UKBB and FinnGen AMD results were meta-
analyzed as the replication sample.

The Blue Mountains Eye Study

The Blue Mountains Eye Study (BMES) is a population-
based cohort study investigating the etiology of common
ocular diseases among suburban residents aged 49 years or
older, in Australia [3]. The full description of the study
design, phenotype definition, and genetic data were
described previously [3, 6, 19, 20]. In brief, retinal photo-
graphs were assessed for AMD lesions following the Wis-
consin Age-Related Maculopathy Grading System for late
AMD cases [21]. The late AMD cases were defined as
presence of neovascular AMD or pure geographic atrophy.
The controls were defined as no soft (distinct or indistinct)
or intermediate drusen, any retinal pigment abnormalities
(either depigmentation or increased pigment), and no signs
of early or late AMD. DNA samples were obtained during
the 5-year follow-up and ancillary surveys, which were

performed between 1997 and 2000. Participants were gen-
otyped with Human610-Quad arrays (Illumina, San Diego,
CA, USA). Genotype data were imputed in Michigan
Imputation Server. We included 100 late AMD cases and
2136 controls of European descent with genetic information
in our analysis.

Statistical analysis

For both of GERA and UKBB AMD GWASs, we con-
ducted logistic regression models under an additive genetic
model adjusting for sex, age, and the first ten genetic
principal components in PLINK software (version 2.0) [15].
Bivariate LD score regression was used to estimate the
genetic correlation between pairs of AMD datasets [22]. We
then used the MTAG software (version 1.0.8) to meta-
analyze the GWAS summary statistics from AMD-2016
GWAS, AMD-2013 GWAS, and AMD GWAS in GERA
study (Fig. 1) [8]. The default quality control procedures in
MTAG were used to filter SNPs with MAF > 0.01. We then
used a stepwise model selection procedure in the GCTA-
COJO software (1.91.7beta) to identify lead independent
genome-wide significant SNPs (both conditional and
unconditional P value < 5 × 10−8) [18, 23]. The lead SNPs
were looked up in the Eye Genotype Expression (EyeGEx)
database of retinal tissue to identify retina-specific expres-
sion quantitative trait loci (eQTL) and expression-trait
associations from transcriptome-wide association study
(TWAS) summary results [24]. We applied summary data-
based Mendelian randomization (SMR) and heterogeneity
in dependent instruments (HEIDI) tests based on AMD
meta-analysis summary statistics and the EyeGEx eQTL
data [25]. We conducted gene-based and pathway analysis
in MAGMA (v1.06) as implemented in FUMA platform
(version 1.3.4) [26, 27].

To derive a polygenic risk score (PRS), we selected the
lead independent genome-wide significant SNPs, and the
PRS was weighted based on the estimated AMD log odds
ratios from the MTAG analysis. The “pROC” package was
used to calculate the area under the curve (AUC) [28]. All
general analyses were performed with R (version 3.4.1).

Results

Meta-analysis of AMD GWASs identifies 12 novel loci

We conducted a meta-analysis based on MTAG method to
combine three AMD GWAS summary statistics: AMD-
2016 GWAS and AMD-2013 GWAS from the IAMDGC,
and AMD GWAS in the GERA cohort (Fig. 1). The genetic
correlations between the AMD input datasets were
very high based on the LD score regression method
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(Supplementary Table S1). We then investigated the MTAG
output summary statistics, and found no evidence of
genomic inflation (lambda genomic control 1.18, LD score
regression intercept 1.03, Supplementary Fig. S1). There is
also no evidence of inflation due to violation of the
homogeneity assumption in MTAG (max False Discovery
Rate 0.0016). From the MTAG GWAS output, we identi-
fied 69 lead independent genome-wide significant SNPs (12
of them are novel loci, Fig. 2, Supplementary Fig. S2, and
Supplementary Table S2).

We then replicated the 12 novel AMD loci in the UKBB
and FinnGen AMD studies. The concordance of SNP effect
sizes between the MTAG discovery cohorts and replication
datasets (UKBB and FinnGen) was high (Pearson’s corre-
lation coefficient 0.89, P value 1.2 × 10−24, Fig. 3). Of the
12 novel loci, the effect sizes of 11 loci were in the expected
direction direction (binomial test P value= 6.3 × 10−3), 5
were associated with AMD at a nominal significance
level (P value < 0.05), and 1 (rs3825991 in gene RLBP1,
P value= 1.6 × 10−3) after Bonferroni correction (Table 1).
We also built a PRS using the 12 novel SNPs, and the score
was strongly associated with AMD status in UKBB (P=
2.4 × 10−4).

Most of the novel genes are expressed in retinal tissue
and could be involved in the pathogenesis of AMD (Box 1).
For instance, C4BPA–CD55 loci are involved in the reg-
ulation of complement activation [29, 30], and NFKB1 and
LBP are important factors for inflammatory response path-
ways [31, 32]. LINC00461 was identified as the most sig-
nificant loci associated with macular thickness [33]. RLBP1
is associated with multiple Mendelian retinal dystrophy
[34, 35], and also one of the strongest AMD-associated
candidate genes from a recent transcriptome-wide

association analysis [24]. These findings are important for
our understanding of the pathogenesis of AMD develop-
ment, and could potentially constitute therapeutic targets for
AMD [36].

Gene-based and pathway analysis

We then conducted a genome-wide gene-based association
analysis and identified an additional 21 novel genes (defined
as no genome-wide significant SNPs within the region of a
gene, Supplementary Fig. S3 and Table S3). For example,

Fig. 2 Manhattan plot of the meta-analysis of genome-wide association studies for AMD. Novel loci are highlighted in red dots, with the nearest
gene names in black text. The red line is the genome-wide significance level at 5 × 10−8 (color figure online)

Fig. 3 Comparison of the effect sizes for 69 genome-wide significant
independent SNPs identified from meta-analysis of AMD GWASs
versus those in UK Biobank and FinnGen AMD GWAS. Pearson’s
correlation coefficient is 0.89 (P value= 1.2 × 10−24). The red line is
the best fit line, with the 95% confidence interval region in gray. Novel
AMD SNPs are highlighted in circle (red) and known SNPs in cross of
oblique line (purple) (color figure online)
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the novel gene PDGFB encodes platelet-derived growth
factor subunit B, which is a member of the protein family
comprised of both platelet-derived growth factor (PDGF)
and vascular endothelial growth factor (VEGF), and could
provide genetic insight into the development of VEGF and
PDGF inhibition for neovascular AMD [37, 38]. Pathway
analysis of 10,678 gene sets (MsigDB v6.2, curated gene
sets: 4761, Gene Ontology terms: 5917) resulted in 19 sig-
nificant gene sets after FDR correction, which include
complement cascade, high-density lipoprotein particle
remodeling, cholesterol transporter activity, and negative
regulation of macrophage-derived foam cell differentiation
(Supplementary Table S4).

eQTL and transcriptome-wide association analysis

We also looked up the 69 genome-wide significant SNPs in
retina from the EyeGEx database to identify eQTL [24]. We
found that 12 genome-wide significant SNPs were sig-
nificant eQTL for 25 SNP-gene pairs (cis-eQTLs) after
gene-level multiple testing correction across the genome
(Table 1 and Supplementary Table S5). Five SNP-gene cis-
eQTLs were from our novel AMD SNPs: rs2011092 (cis-
eQTL target gene ZBTB38), rs1378940 (MPI), rs3825991
(RLBP1), rs9973159 (CLUL1), and rs9973159 (RP11-
806L2.2). Of the 12 genome-wide significant SNPs we
identify here, one was study-wide significant in a previous
TWAS based on earlier AMD GWAS summary statistics
[24] (Table 1).

To test the effects of genetic variants on AMD risk that is
mediated by gene expression levels, we also conducted
SMR and HEIDI tests [25]. SMR investigates the relation-
ships between gene expression levels (exposure) and phe-
notype (outcome) using genetic variants as instrumental
variables. We identified 19 genes after multiple testing
correction (PSMR < 0.05/5075= 9.85 × 10−6, Supplemen-
tary Table S6). We further used the HEIDI method to test
the null hypothesis that there is a single causal variant
affecting both gene expression levels and AMD risk. We
identified two genes that passed the HEIDI test (PHEIDI ≥
0.05), PMS2P1 and BLOC1S1, which are associated with
AMD risk underlying the GWAS hits suggesting that these
genes are good candidates of prioritizing for functional
follow-up studies.

Prediction value of AMD polygenic risk score

We constructed an AMD PRS from 69 lead SNPs (PRS69-SNP),
and then evaluated the prediction performance in 100
late AMD cases and 2136 controls from the BMES. The
AUC of the PRS69-SNP was 0.76 (95% confidence interval
[CI]: 0.72–0.80). To assess the improvement of our new
PRS compared with previous AMD PRS, we derived a PRSTa
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from previously published 52 SNPs (PRS52-SNP) for BMES.
The prediction ability of our new PRS69-SNP was better than
that based on previously published SNPs PRS52-SNP
(AUC52-SNP= 0.74, 95% CI: 0.70–0.79), although the
AUC improvement was not significant (P= 0.21).

Discussion

We have conducted a large meta-analysis of GWAS for
AMD and identified 69 genome-wide significant SNPs (12
novel). We found that most of the novel genes are expressed
in retina and could be involved in AMD pathogenesis.
Through genome-wide gene-based association analysis, we
identified an additional 21 novel genes. Pathway analysis
indicated complement cascade, high-density lipoprotein
particle remodeling, cholesterol transporter activity, and
negative regulation of macrophage-derived foam cell

differentiation are involved in the biological process
underlying AMD risk.

In this study, we conducted a multivariate GWAS (based
on MTAG method) rather than a traditional inverse-
variance meta-analysis. Traditional meta-analysis assumes
that the input GWAS summary statistics are derived for the
same trait (a genetic correlation close to one) [10]. In
practice, the heterogeneity of the case phenotype would lead
to a lower genetic correlation (<1) even for the same trait.
Recent statistical methodology studies showed that multi-
variate GWAS can leverage multiple input summary sta-
tistics of the same trait with different measures or even
different traits with a high genetic correlation [8, 9]. Our
input files AMD-2016 GWAS and AMD-2013 GWAS are
summary statistics for advanced AMD, and the AMD cases
in GERA are identified using EHRs, which could include
both of advanced and early or intermediate AMD cases. The
MTAG approach is able to handle this issue by leveraging

Box 1 Biology annotations of 12 novel AMD loci

Nearest genes Gene function

C4BPA–CD55 Complement component 4 binding protein alpha (C4BPA) and decay accelerating factor for complement (CD55) are involved
in the regulation of complement activation [30, 31]. Previous functional studies proposed that the expression of CD55 in retinal
pigment epithelium cells could be a potential therapeutic target for AMD [37]. CD55 was also reported to be associated with
myopia [46]

ZNF385B Zinc finger protein 385B (ZNF385B) is highly expressed in retinal tissue [47]. Patient with a 2q31.2-32.3 deletion presented
microphthalmia and retinal coloboma [48]

ZBTB38 ZBTB38 encodes zinc finger and BTB domain containing 38, a zinc finger transcriptional activator that binds methylated DNA.
Its function in eye is uncharacterized

NFKB1 Nuclear factor kappa B subunit 1 (NFKB1) is related to many biological processes such as inflammation, immunity,
differentiation, cell growth, tumorigenesis, and apoptosis. The activation of NF-κB is an important pathway to the
development of AMD [33, 49]

LINC00461 LINC00461 is a long noncoding RNA and expressed predominantly in the brain and visual cortex. It is the most significant
loci associated with macular thickness [34]. It is also associated with retinal vascular caliber [42, 43], and macular
telangiectasia type 2 [44]

ADAM19 Disintegrin and metalloproteinase domain-containing protein 19 (ADAM19) is a member of the ADAM (a disintegrin and
metalloprotease domain) family. It is associated with Alzheimer’s disease and could play an important role in retinal
degeneration diseases [50, 51]

CPN1 Carboxypeptidase N subunit 1 (CPN1) plays a central role in regulating the biologic activity of peptides such as kinins and
anaphylatoxins. It could be involved in choroid development [52], and a recently Bayesian functional association study also
showed that CPN1 is associated with AMD

ACSL5 ACSL5 plays a key role in lipid biosynthesis and fatty acid degradation [45]

CSK C-terminal Src kinase (CSK) plays an important role in T-cell activation and the phosphorylation of C-terminal tyrosine
residues. It is expressed in retinal vascular endothelial cells [53]

RLBP1 Retinaldehyde binding protein 1 (RLBP1) is related to multiple Mendelian retinal dystrophy [24, 35]. A recent study showed
this gene could increase AMD risk by the interaction effect between the nuclear and mitochondrial genome [54]. A
transcriptome-wide association study also identified this gene associated with AMD [36]

CLUL1 CLUL1 encodes retinal clusterin-like protein. Clusterin is expressed in many eye tissues, such as retinal pigment epithelium,
ganglion cells, and photoreceptor cells. Although candidate gene study found no pathogenic variants [55], a recent study
showed an interaction effect of gene age for AMD risk [55]

LBP Lipopolysaccharide binding protein (LBP) is involved in inflammatory response through NF-kB and MAPK signaling. It
protects human retinal pigment epithelial cells against oxidative stress-induced apoptosis, which contributes to the
pathogenesis of AMD development [32]
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the high genetic correlation between the input summary
statistics and maximize the statistical power to detect
genetic associations for advanced AMD (our index input
AMD-2016 GWAS, which has the highest power). More
importantly, the MTAG approach can handle sample
overlap between the input GWAS summary statistics [8]. In
our multivariate GWAS, there is some sample overlap
between the AMD-2016 GWAS and the AMD-2013
GWAS. In this scenario, MTAG framework is an ideal
method for taking full advantage of the large public avail-
able GWAS summary statistics.

The gene discovery from our MTAG GWAS will con-
tribute toward the understanding of the biology mechanisms
and the etiology of AMD. As we presented in Box 1, most
of the novel loci are potentially involved in the biological
process of AMD. For instance, macular thickness is an
important quantitative trait for AMD [39]. A recent first
macular thickness GWAS identified 139 loci, and some of
them are known AMD genes, such as RDH5, NPLOC4,
RAD51B, and SLC16A8 [33]. Our meta-analysis of GWASs
identified a novel AMD loci LINC00461, which is the most
significant signal from the macular thickness GWAS [33].
LINC00461 is a long noncoding RNA and expressed pre-
dominantly in the brain and visual cortex [40]. Previous
GWAS also indicated that LINC00461 is associated with
retinal vascular caliber [41, 42], a risk factor of AMD, and
macular telangiectasia type 2 [43], a rare neurovascular
degenerative retinal disease. Our meta-analysis of GWASs
also identified novel genes involved in the regulation of
complement activation [29, 30], lipid biosynthesis [44],
inflammatory response [31, 32], and Mendelian retinal
diseases [34, 35]. All together, these gene findings help us
have a better understanding of the pathogenesis of AMD.

In this study, we conducted a meta-analysis of GWASs
for individuals of European ancestry, hence the general-
izability of the novel AMD genes to other populations still
needs further replication. Besides, our replication dataset of
UKBB has a relatively small sample size and young parti-
cipants (40–69 years old), and the AMD cases were iden-
tified using both hospital health records and self-reported
cases. Although the concordance of SNP effect sizes
between the MTAG discovery cohorts and replication
cohorts was high and most of them were in the expected
direction, replication datasets with larger sample size of
clinical diagnosis cases would improve the power to repli-
cate our novel genes. Moreover, although we looked up the
eQTL and TWAS results in retinal tissue and further lit-
erature search indicated that most of these genes are prob-
ably involved in the pathogenesis of AMD, additional
functional studies are warranted to investigate the under-
lying biological mechanisms of the novel genes. Finally,
using BMES samples we evaluated the prediction value of a
PRS based on (1) 69 lead SNPs identified here and (2) 52

previously published SNPs. Both PRSs were derived using
the AMD consortium data which included a subset of the
BMES samples used here to test the PRS and in theory this
could induce slight over-fitting due to sample overlap. In
practice this would have a negligible effect on our results
because (1) the sample overlap is very small (~0.5% of
cases) and (2) we only used a small number of SNPs in our
PRS. Although our new PRS improved the prediction AUC
(from 0.74 previously, to 0.76 here), the increase was not
statistically significant, possibly due to the limited number
of advanced AMD cases in BMES or the small effect sizes
of the additional GWAS signals. We performed an
exploratory analysis using the PRS in the UKBB cohort
although the AUC values were substantially lower (data not
shown), reflecting the fact that due to their relatively young
age, most UKBB cases did not have advanced AMD.

In conclusion, we conducted a meta-analysis GWAS for
AMD and identified 12 novel loci. Most of the novel genes
are expressed in retinal tissue and could be involved in
the pathogenesis development of AMD. These findings
enhance our understanding of the disease mechanisms
of AMD.
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