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Abstract

Background: Age-related macular degeneration (AMD) is a leading cause of vision loss.

Whereas lipids have been studied extensively to understand their effects on cardiovascu-

lar diseases, their relationship with AMD remains unclear.

Methods: Two-sample Mendelian randomization (MR) analyses were performed to

systematically evaluate the causal relationships between eight serum lipid biomarkers,

consisting of apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), total cholesterol

(CHOL), high-density lipoprotein cholesterol (HDL-C), direct low-density lipoprotein cho-

lesterol (LDL-C), lipoprotein A [Lp(a)], triglycerides (TG) and non-HDL cholesterol (non-

HDL-C), and the risk of different AMD stages and subtypes. We derived 64–407 genetic

instruments for eight serum lipid biomarkers in 419 649 participants of European descent

from the UK Biobank cohort. We conducted genome-wide association studies (GWAS)

for 12 711 advanced AMD cases [8544 choroidal neovascularization (CNV) and 2656 geo-

graphic atrophy (GA) specific AMD subtypes] and 5336 intermediate AMD cases with

14 590 controls of European descent from the International AMD Genomics Consortium.

Results: Higher genetically predicted HDL-C and ApoA1 levels increased the risk of all

AMD subtypes. LDL-C, ApoB, CHOL and non-HDL-C levels were associated with

decreased risk of intermediate and GA AMD but not with CNV. Genetically predicted TG

levels were associated with decreased risk of different AMD subtypes. Sensitivity

analyses revealed no evidence for directional pleiotropy effects. In our multivariable MR

analyses, adjusting for the effects of correlated lipid biomarkers yielded similar results.

Conclusion: These results suggest the role of lipid metabolism in drusen formation and

particularly in AMD development at the early and intermediate stages. Mechanistic stud-

ies are warranted to investigate the utility of lipid pathways for therapeutic treatment in

preventing AMD.
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Introduction

Age-related macular degeneration (AMD) is a leading

cause of vision loss among the elderly in Western coun-

tries.1–3 The global prevalence of AMD is 8.7% among

individuals aged �45 years, with a higher prevalence of

12.3% in Europeans.2 The progression of AMD is classi-

fied as early, intermediate and late stage.4,5 The clinical

hallmark in the early stage of AMD is the presence of dru-

sen, which are formed by deposits of extracellular debris

between the retinal pigment epithelium and Bruch’s mem-

brane.6 The initiation and formation of drusen are not yet

well understood; histochemical studies support an ‘oil spill’

model, indicating lipid-rich extracellular lesions in dru-

sen.7–9 Approximately 40% of drusen content is comprised

of lipids.10 Intermediate AMD is characterized by exten-

sive intermediate drusen or at least one large drusen.11

AMD has two advanced types: (i) geographic atrophy (GA,

dry) AMD, accounting for 90% of AMD, is characterized

by drusen and retinal pigment epithelium degeneration (fo-

cal hyperpigmentation or atrophy); and (ii) choroidal neo-

vascularization (CNV, wet) AMD, is characterized by

abnormal vascular proliferation underneath the retina.

Currently, anti-vascular endothelial growth factor therapies

have been used to reduce the progression of CNV.12

However, the treatment is not curative, and there are no ef-

fective medications for GA. Moreover, a better scenario is to

treat AMD at an earlier stage before serious vision loss

occurs. It is therefore important to find new pathogenesis

pathways and intervention targets for AMD.

In recent years, epidemiological and genetic studies

have shown the potential role of lipids in AMD risk.13–19

For instance, an observational meta-analysis reported that

a higher level of high-density lipoprotein cholesterol (HDL-

C) was associated with an increased risk of AMD, whereas

higher levels of total cholesterol (CHOL), low-density lipo-

protein cholesterol (LDL-C) and triglycerides (TG) were as-

sociated with a decreased risk of AMD.14 However,

observational studies have shown inconsistent results with

respect to the association between lipids and AMD risk,14,17

and are susceptible to confounding factors or influenced by

reverse causality.13,14,18Genome-wide association studies

(GWAS) have identified > 50 variants associated with

AMD, and some of them are also associated with lipid

traits, such as ABCA1, APOE, CETP, LIPC and

VEGFA.20,21

Mendelian randomization (MR) is an approach to inves-

tigate the causal relationships between risk factors and out-

comes via the use of genetic variants as natural experiments.

Compared with traditional observational studies, MR is less

likely to be affected by confounding or reverse causa-

tion.22,23 Two previous MR studies have shown a causal re-

lationship between increased HDL-C levels and advanced

AMD risk.15,16 However, the relationship between HDL-C

and different AMD subtypes remains unclear. More impor-

tantly, the associations between different lipid subfractions,

such as apolipoprotein A1 (ApoA1), apolipoprotein B

(ApoB) and lipoprotein A [Lp(a)], and AMD risk have not

been well studied. Elucidating these relationships might help

us identify lipid-modifying therapeutic targets for AMD.

In this study, we systematically investigate the associa-

tion between eight major serum lipid biomarkers [ApoA1,

ApoB, CHOL, HDL-C, LDL-C, Lp(a), TG, and non-HDL-

C] and the risk of different AMD subtypes using large scale

genetic data from the UK Biobank and the International

AMD Genomics Consortium via a two-sample MR

Key Messages

• The association between lipids and age-related macular degeneration (AMD) is inconsistent and the relationships be-

tween lipid subfractions and different AMD stages and subtypes have not been well studied.

• In the largest study to date, we have sufficient power for a two-sample Mendelian randomization analysis to evaluate

the causal relationship between different lipid subfractions and the risk for different AMD stages and subtypes.

• Our study provides genetic evidence that circulating high-density lipoprotein cholesterol (HDL-C) and apolipoprotein

A1 (ApoA1) levels increase the risk of all AMD subtypes, whereas low-density lipoprotein cholesterol (LDL-C), apolipo-

protein B (ApoB), total cholesterol (CHOL) and non-HDL-C levels are particularly associated with decreased risk of

intermediate and geographic atrophy AMD.

• These findings help us glean a better understanding of the role of lipid metabolism in drusen formation and

particularly in AMD development at both the early and intermediate stages.
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framework. To our knowledge, our study is the first to

consider the effect of a wide range of lipid biomarkers

[eight in total, including ApoA1, ApoB and Lp(a)] on the

risk of AMD and its subtypes. This study would help us

glean a better understanding of the role of lipids in differ-

ent AMD stages and subtypes, and provide therapeutic

implications for AMD.

Methods

We performed GWAS for each of the eight serum lipid bio-

markers in the UK Biobank cohort to identify genetic instru-

ments. We then conducted a series of GWAS analyses on

AMD outcomes of interest (namely, for intermediate AMD,

advanced AMD and its subtypes CNV and GA) using the

individual-level data from the International AMD

Genomics Consortium (independent samples from UK

Biobank). Causal inferences can then be drawn via two-

sample MR analysis to evaluate the potential causal rela-

tionships between each of the eight serum lipid biomarkers

and different AMD subtypes using GWAS summary

statistics.24

The UK Biobank study was approved by the National

Research Ethics Service Committee North West—

Haydock, all participants provided informed written con-

sent, and all study procedures were performed in accor-

dance with the World Medical Association Declaration of

Helsinki ethical principles for medical research. In the

International AMD Genomics Consortium, all groups col-

lected data according to the Declaration of Helsinki princi-

ples. All study participants provided informed consent, and

protocols were reviewed and approved by the local ethics

committees.20

Serum lipid biomarkers in UK biobank

The UK Biobank is a prospective cohort study with deep

genetic and phenotypic data collected on half a million

people aged between 40 and 69 years across the UK.25

The sample collection and quality control procedures for

serum lipid biomarkers were described in detail elsewhere

(see: http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/bio

marker_issues.pdf). We identified 438 870 individuals who

were genetically similar to those of White British ances-

try.26 For lipid biomarker GWAS analyses, we only in-

cluded participants of White British ancestry.26 The serum

lipid biomarkers ApoA1, ApoB, CHOL, HDL-C, direct

LDL-C, Lp(a) and TG, were measured using standard

procedures in a Beckman Coulter AU5800. We calculated

non-HDL-C by subtracting HDL-C from total choles-

terol.27 The sample size and characteristics for each of the

serum lipid biomarkers are presented in Table 1. The dis-

tributions of some serum lipid biomarkers were right-

skewed [such as Lp(a) and TG, Supplementary Figure S1,

available as Supplementary data at IJE online]. We applied

a rank-based inverse-normal transformation to the concen-

tration values for each lipid biomarker in order to interpret

genetic estimates in standard deviation (SD) units.28 We

computed the phenotypic correlation between lipid

biomarkers using the transformed concentration values

(Supplementary Figure S2, available as Supplementary

data at IJE online).

Genetic instruments for serum lipid biomarkers

For the GWAS of serum lipid biomarkers, we constructed

linear mixed models using BOLT-LMM software (version

Table 1 Serum lipid biomarkers in the UK Biobanka

Variables n Mean (SD) Median (IQRb) n SNPsc Variance explained

Sex 419 649 227 003 (54%)d – – –

Age, years 419 649 56.83 (8.01) 58 (51 to 63) – –

ApoA1, g/L 382 867 1.54 (0.27) 1.52 (1.35 to 1.7) 407 0.11

ApoB, g/L 417 522 1.03 (0.24) 1.02 (0.87 to 1.18) 241 0.13

CHOL, mmol/L 419 516 5.71 (1.14) 5.67 (4.93 to 6.44) 231 0.09

HDL-C, mmol/L 384 986 1.45 (0.38) 1.4 (1.18 to 1.68) 488 0.12

Direct LDL-C),

mmol/L

418 780 3.57 (0.87) 3.53 (2.96 to 4.13) 215 0.10

Lp(a), nmol/L 334 646 44.12 (49.49) 20.11 (9.33 to 60.1) 64 0.16

TG, mmol/L 419 185 1.76 (1.02) 1.49 (1.06 to 2.16) 394 0.11

non-HDL-C,

mmol/L

384 915 4.26 (1.08) 4.2 (3.49 to 4.94) 207 0.09

aThe biochemistry markers are described on http://biobank.ctsu.ox.ac.uk/crystal/label.cgi? id¼17518.
bIQR, interquartile range.
cNumber of genetic instruments.
dThe frequency and percentage of females are presented.

International Journal of Epidemiology, 2020, Vol. 00, No. 00 3

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyaa178/5992320 by U

C
L, London user on 10 February 2021

http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/biomarker_issues.pdf
http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/biomarker_issues.pdf
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa178#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa178#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa178#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa178#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa178#supplementary-data
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi? id=17518
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi? id=17518


2.3).29 The models were adjusted for sex and age. The first

ten principal components were also included as covariates

to speed up the convergence of BOLT-LMM’s mixed

model computations. The genetic instruments for each of

the serum lipid biomarkers were selected based on the fol-

lowing criteria: (i) P-value from GWAS < 5�10–8; (ii)

linkage disequilibrium (LD) between single nucleotide

polymorphisms (SNPs) r2 < 0.001 within a clumping win-

dow of 10 000 kb;30 and (iii) the SNPs being present in the

AMD GWAS summary statistics (described below). We

randomly selected 5000 UK Biobank White British ances-

try individuals as the reference panel.31 The LD-clumping

procedure was performed using PLINK (version 1.9).32

AMD datasets

The International AMD Genomics Consortium has the

largest collection of European AMD samples (16 144 ad-

vanced AMD cases and 17 832 controls, Supplementary

Table S1, available as Supplementary data at IJE online).20

A detailed description of the study design, AMD subtype

definitions and genetic data were presented previously.20

In brief, AMD samples were gathered from 26 studies with

each including: (i) intermediate AMD cases with >5 macu-

lar drusen >63 lm in diameter or pigmentary changes in

the retinal pigment epithelium and age at first diagnosis

>50 years; (ii) advanced AMD cases with CNV and/or GA

in at least one eye and age at first diagnosis >50 years; (iii)

controls without known advanced or intermediate

AMD.20 The individual level AMD phenotypic and genetic

data were obtained from the database of Genotypes and

Phenotypes (dbGaP, study accession: phs001039.v1.p1).20

The genetic imputation was based on the 1000 Genomes

Project reference panel (1KGP Phase I, version 3) using

Minimac.20 The SNPs were filtered by imputation quality

score (>0.3) and minor allele frequency (MAF > 0.01) for

association analysis. In the association analysis, non-

European ancestry participants were removed based on the

first two principal components inferred ancestry.20 For dif-

ferent AMD subtype GWASs, we included 5336 intermedi-

ate AMD cases, 8544 CNV cases, 2656 GA cases, 12 711

advanced AMD cases (CNV, GA cases, and 1511 mixed

AMD cases with both CNV and GA) and 14 590 controls.

The association analyses were implemented in PLINK soft-

ware (version v2.00a1LM) adjusting for sex, age and the

first ten principal components.

Statistical analysis

The R packages MendelianRandomization and

TwoSampleMR were used for MR analyses.33,34 All gen-

eral analyses were performed with R (version 3.4.1). We

used a two-sided alpha at 0.00625 (0.05/8) to account for

the multiple testing of eight lipid-related traits, although

given the high genetic correlation between the lipid-related

traits the Bonferroni correction can be considered overly

conservative.

Power calculation for MR analysis

We first assessed the power of the MR analyses for differ-

ent lipid biomarkers with different AMD subtypes. We cal-

culated the phenotypic variance explained by genetic

instruments for each biomarker using the formula

(2�MAF � (1 � MAF) � beta2)/var(biomarker), where

beta is the estimated effect size of each SNP and var(bio-

marker) is variance (typically very close to one) after the

rank-based inverse-normal transformation.35 We assumed

different effect sizes of lipid biomarkers on AMD risk, and

used the mRnd (http://cnsgenomics.com/shiny/mRnd/)

method to calculate the power for MR analyses.36

Univariable MR analysis

For the two-sample MR analysis between each lipid bio-

marker and AMD risk, the univariable inverse-variance

weighted (MR-IVW) method was used in the main

analysis.37,38MR-IVW is a weighted linear regression

method to regress the effects of genetic instruments on

AMD (outcome) against their effects on lipid biomarker

(exposure), with a forced intercept term at zero and

weighted by inverse-variance.37

Sensitivity analysis

We then conducted various sensitivity analyses which al-

low violations of MR assumptions to assess the robustness

of MR findings.39 In particular, the weighted median MR

method enables robust inference to be made providing

>50% of the genetic variant weights are from valid instru-

ments.39 The MR-Egger method models an intercept term

to detect and correct for bias due to directional pleiot-

ropy.34,39 Although pleiotropy is concerning, if the pleio-

tropic effects of genetic instruments average to zero

(equally likely to be positive or negative, no directional

pleiotropy), the overall estimate would be unbiased.39 The

intercept term from the MR-Egger method was used to as-

sess evidence for directional pleiotropy (i.e. intercept close

to zero and P value > 0.05).34 We also applied the MR

pleiotropy residual sum and outlier (MR-PRESSO) method

to evaluate potential bias from outliers and assess the over-

all heterogeneity of our MR estimates.40 The MR-PRESSO

method can identify outlier variants and correct for their

effects via outlier removal (MR-PRESSO outlier test). We
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also implemented a leave-one-chromosome-out analysis by

excluding genetic variants in each chromosome out in turn

and re-computing the MR-IVW estimates, as a means to

assess the influence of particular genes from the same chro-

mosome on the overall MR findings.

Bi-directional MR analyses were used to estimate the

potential effects of different AMD subtypes on serum lipid

biomarker levels. In the reverse-directional analysis, the

genetic instruments for different AMD subtypes were se-

lected via similar criteria as was the case for serum lipid

biomarkers as described earlier.

Multivariable MR analysis

We performed a regression-based multivariable MR

(MVMR) analysis by selecting groups of exposures to avoid

collinearity (Figure 1). In the multivariable MR-IVW analy-

sis, the genetic instrumental variables associated with any of

the included set of exposures were included.41,42 The multi-

variable MR-Egger method is an extension of the univari-

able MR-Egger method to account for multiple lipid

biomarkers, and at the same time models an intercept term

to correct for both measured and unmeasured pleiotropy.43

We also used a recently developed MVMR approach

based on Bayesian model averaging (MR-BMA) that scales

to high-throughput data to detect true causal risk factors

even when the candidate risk factors are highly corre-

lated.44,45 In the MR-BMA analysis, we included all

genetic variants that were genome-wide significant for any

lipid biomarker and selected 807 independent genetic

variants as instrumental variables. The genetic correlation

between lipid biomarkers was computed using the effect

sizes of the independent genetic variants. The MR-BMA

used a shotgun stochastic search algorithm to evaluate the

posterior probability of all combinations of risk factors and

then computed for each risk factor its marginal inclusion

probability. More details are given in the Supplementary

Material, available as Supplementary data at IJE online.

Results

Serum lipid biomarkers, genetic instruments and

statistical power

We included 419 649 participants with at least one lipid

biomarker measured in the UK Biobank. The proportion

of females was 54% and the mean age was 56.83 (SD

8.01) years (Table 1). We observed a high genetic correla-

tion between ApoA1 and HDL-C, ApoB and LDL-C/

CHOL/non-HDL-C levels (maximum genetic association

of jrj < 0.978, Figure 1 and Supplementary Figure S3,

available as Supplementary data at IJE online). For differ-

ent serum lipid biomarkers, we identified 64–407 genome-

wide significant independent variants as genetic instru-

ments, and they collectively explained 9–16% of the phe-

notypic variance (Table 1). We calculated the MR analysis

statistical power for different AMD subtypes; even with

9% variance explained, our power for intermediate,

advanced AMD, GA and CNV AMD subtypes was 95,

100, 79 and 98%, respectively, assuming moderate effect

Figure 1 The genetic correlation and cluster of eight serum lipid biomarkers. The left panel displays genetic correlation between each pair of serum

lipid biomarkers based on n¼ 807 independent genetic variants that were genome-wide significant for any lipid biomarker. The right panel shows the

cluster of the eight serum lipid biomarkers
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sizes [e.g. odds ratio (OR) 1.2, Supplementary Table S2,

available as Supplementary data at IJE online).

The associations between eight serum lipid

biomarkers and different AMD subtypes

In the univariable MR analysis, one SD higher HDL-C

levels increased the risk of advanced AMD by 19% [MR-

IVW OR 1.19, 95% confidence interval (CI) 1.07–1.33,

P value 1.2� 10–3]. The association was consistent across

different AMD subtypes and across different MR methods

(weighted median, MR-Egger, Figure 2 and Supplementary

Table S3, available as Supplementary data at IJE online).

As expected given the high correlation with HDL-C, higher

ApoA1 levels were also associated with increased risk of

different AMD subtypes.

Raised LDL-C levels were nominally associated

with decreased risk of advanced AMD (OR 0.87, 95%

Figure 2 Univariable MR estimates of the associations between eight serum lipid biomarkers and different AMD subtypes. The x-axis is the OR of the

effects of lipid biomarkers on AMD subtypes. The vertical dashed line is the reference at OR¼ 1. The y-axis presents different AMD subtypes,

highlighted in different colours. Different MR methods are displayed with different line types (MR-IVW, solid line; MR-Egger, dashed line; weighted

median, dotted line)
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CI 0.76–1.00, P value 0.04). However, when split by

AMD subtype, the association was primarily with GA (OR

0.70, 95% CI 0.59–0.83, P value 3.8� 10–5) and interme-

diate (OR 0.77, 95% CI 0.67–0.87, P value 6.5� 10–5)

AMD; there was no strong evidence for association with

CNV AMD (OR 0.93, 95% CI 0.80–1.08, P value 0.34).

Similarly, for the correlated traits ApoB, CHOL and non-

HDL-C, all were not associated with CNV AMD, but were

associated with GA and intermediate AMD.

Higher levels of TG were associated with decreased risk

of different AMD subtypes, and the estimates were broadly

consistent across different AMD subtypes (intermediate

AMD OR 0.74, 95% CI 0.66–0.83, P value 2.5� 10–7;

advanced AMD OR 0.81, 95% CI 0.72–0.90, P value

1.4� 10–4). Lp(a) levels were not associated with any of

the AMD subtypes (intermediate AMD OR 0.96, 95% CI

0.85–1.09, P value 0.53; advanced AMD OR 1.00, 95%

CI 0.89–1.12, P value 0.94) even though the variance

explained by the genetic instruments for Lp(a) was higher

than for any other lipid biomarkers.

Sensitivity analysis

We applied MR median-weighted and MR-Egger methods

to validate the MR-IVW estimates (Figure 2, Supplementary

Table S3, available as Supplementary data at IJE online);

their estimates were broadly consistent with the MR-IVW

method with overlapping CIs. The MR-Egger intercepts

showed no evidence of directional pleiotropy effects (inter-

cepts were �0, P>0.05).

We conducted MR-PRESSO outlier-corrected tests, and

found that most of the MR analyses were not meaningfully

changed after removing outlier variants except the

effects of HDL-C, ApoA1 and TG on CNV AMD risk

(Supplementary Figure S4 and Supplementary Table

S4,available as Supplementary data at IJE online). The re-

moved outlier SNPs were mainly from genes CETP, LIPC,

APOE and ABCA1. Given the strong associations between

variants in these genes and both lipid biomarkers and

AMD risk, removing these variants would affect the esti-

mated effect sizes in MR analyses.20,46 To further investi-

gate the robustness of the MR results, we applied a leave-

one-chromosome-out analysis by leaving genetic variants

in each chromosome out in turn for the MR analyses

(Supplementary Figure S5, available as Supplementary

data at IJE online). We found a striking difference in the

results for Lp(a) depending on chromosome 6. However,

most of the variance in Lp(a) is controlled by variants in

LPA (96.9%, in chromosome 6). We found no association

between the SNP rs10455872 [the top SNP in the LPA

region associated with Lp(a) levels] and AMD risk

(OR ¼ 1.03, P¼ 0.40 for advanced AMD; OR ¼ 0.97,

P¼ 0.61 for GA AMD).

We found weak evidence of liability towards AMD

on lipid traits via reverse-direction MR analyses

(Supplementary Figure S6, available as Supplementary

data at IJE online). To investigate the influence of lipid-

related drugs on our MR results, we identified 87 904 par-

ticipants taking statins (data coding C10AA) in the UK

Biobank.47 We also found 6030 participants with self-

reported or medical electronic health records of macular

degeneration. We removed both statin users and AMD

cases in the UK Biobank to re-select the genetic instruments

for serum lipid biomarkers from GWAS. The MR results

were unchanged (Supplementary Figure S7, available as

Supplementary data at IJE online).

Multivariable MR

We conducted multivariable MR analyses (MVMR-IVW

method) to estimate the direct effects of serum lipid bio-

markers on AMD risk conditional on other serum lipid

biomarkers. We selected groups of exposures to avoid col-

linearity. In the classic trio (HDL-C, LDL-C and TG), we

included n¼ 700 independent SNPs associated with any of

the three biomarkers as instrumental variables. The associ-

ations of HDL-C and LDL-C with AMD risk were essen-

tially unchanged in multivariable MR analyses compared

with univariable MR analysis (first column in Figure 3).

We further replaced HDL-C with ApoA1 in the trio (i.e.

ApoA1, LDL-C and TG, second column in Figure 3), and

the results were similar to the trio HDL-C, LDL-C and TG.

The MVMR results for Lp(a), CHOL and non-HDL-C were

similar to univariable MR results (columns 3, 4 and 5 in

Figure 3). The multivariable MR-Egger intercepts showed

no evidence of directional pleiotropy effects (Supplementary

Table S5, available as Supplementary data at IJE online).

We conducted multivariable MR-BMA analyses to se-

lect causal serum lipid biomarkers. When the prior proba-

bility was set at 0.125 or 0.25 (corresponding to a priori of

one or two expected causal biomarkers), we found ApoA1

has relatively higher probabilities and causal effects for all

AMD subtypes, and TG has the highest probability to be

the causal risk factor for intermediate AMD (Supplementary

Figure S8 and Supplementary Material, available as

Supplementary data at IJE online).

Discussion

We systematically evaluated the effects of eight serum lipid

biomarkers on the risk of different AMD subtypes. We

found that higher genetically predicted HDL-C and ApoA1

levels increased the risk of all AMD subtypes, whereas
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LDL-C, ApoB, CHOL and non-HDL-C levels appeared to

be only associated with decreased risk of intermediate and

GA AMD. Genetically predicted TG levels were associated

with decreased risk of different AMD subtypes. The role of

lipids in cardiovascular disease risk is well studied.

Compared with cardiovascular disease risk, most of these

serum lipid biomarkers showed the opposite direction

effects on AMD risk.48 These findings suggest varying roles

of lipids in different AMD stages and subtypes.

Previous observational studies have suggested a poten-

tial relationship between lipid biomarkers and AMD risk;

however, the results were inconsistent.13,14,18 We found

that genetically elevated HDL-C levels increased the risk of

AMD, consistent with findings from previous observa-

tional and MR studies.14–16,18 Typically, HDL-C can medi-

ate reverse cholesterol transport and have atheroprotective

functions, such as anti-inflammatory, antioxidant and en-

dothelial cell maintenance.49 However, dysfunctionally el-

evated HDL-C could have pro-inflammatory and pro-

oxidant roles that impair cholesterol efflux and promote

the accumulation of drusen.50,51 Our results indicate that

the effect of HDL-C levels on intermediate AMD (OR

1.34, 95% CI 1.20–1.49) appeared larger than that on ad-

vanced AMD, which was also highlighted in a recent

observational study,18 where the effect sizes of estimates

were broadly consistent with observational studies. We

did, however, find evidence that the effect predicted by

these HDL-C genetic instruments are rather heterogeneous.

For instance, removing genetic instruments from the gene

CETP (chromosome 16) attenuated the effect of HDL-C

on AMD risk towards the null (e.g. for the CNV subtype);

while excluding variants from the gene LIPC (chromosome

15) amplified the association (Supplementary Figures S4

and S5, available as Supplementary data at IJE online).

These results suggest that serum HDL-C risk variants in

CETP and LIPC might have counteracting effects on

AMD risk, as discussed in previous literature.15,18,52 We

speculate that HDL-C-related genes may affect AMD risk

via different pathways. As the major apolipoproteins in

HDL-C particles (genetic correlation 0.96), higher ApoA1

levels also increase the risk of AMD. In our MR-BMA

analysis, serum ApoA1 levels have relatively higher proba-

bilities and effects for AMD compared with other lipid bio-

markers. A recent study also showed that extra-large and

large HDL particles are putative risk factors for AMD.44

The relationship between LDL-C and AMD risk has

proved controversial in previous observational and genetic

studies. For instance, a meta-analysis study showed a

Figure 3 Multivariable MR estimates of the associations between eight serum lipid biomarkers and different AMD subtypes. The x-axis is the esti-

mated OR for AMD subtypes per SD increase in genetically predicted lipid concentration levels for each lipid biomarker evaluated. The vertical

dashed line is the reference at OR¼ 1. The y-axis lists the different AMD subtypes. The multivariable IVW estimates are shown with a solid line,

whereas the multivariable estimates adjusted for the MR-Egger intercept are shown with a dashed line. Each column facet indicates the selected

group of exposures in multivariable MR analysis, when all independent SNPs associated with any of the included exposures were fitted
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protective tendency between LDL-C levels and AMD

risk.14 Further stratified analysis based on AMD subtypes

revealed a protective effect on early stage, but not on late

stage. A recent large-scale epidemiologic study also

indicated that LDL-C levels were only associated with

early AMD.18 Previous MR studies, by contrast, showed

no evidence of association between LDL-C levels and ad-

vanced AMD risk.15,16 In this study, we observed a nomi-

nal association between higher LDL-C levels and decreased

advanced AMD risk. Importantly, LDL-C levels exhibit a

clear protective effect on intermediate and GA AMD

subtypes. The nominal association between LDL-C and

advanced AMD was likely driven by GA AMD subtype

even though only a smaller proportion of advanced AMD

cases were GA in the data sets. For ApoB, CHOL and non-

HDL-C, all of them were associated with intermediate and

GA AMD, but not CNV AMD. Previous observational

studies have also shown that drusen are more likely to be

involved in the development of GA AMD rather than CNV

AMD.53,54 These results suggest that LDL-C and ApoB

may be involved in the formation of drusen in the early

and intermediate stages of AMD, and the development of

GA AMD;55 in contrast, their roles in CNV AMD appear

limited.

Previous observational studies have shown that higher

TG levels reduce the risk of early stage AMD but not late

stage.14,18 In our univariable MR analysis, raised TG levels

were associated with decreased risk of different AMD sub-

types; however, the effect size on CNV AMD subtype was

smaller and was not that robust based on MR-PRESSO

outlier-corrected tests. In this study, we find no evidence of

the association between Lp(a) and AMD risk. Serum Lp(a)

levels are mainly genetically determined by genetic varia-

tions in the LPA gene region,56,57 none of which showed

association with AMD risk. We found a SNP rs7412 in

APOE that is both associated with Lp(a) concentration

and AMD risk. However, apoE proteins are thought to

influence Lp(a) catabolism through lipoprotein receptor

clearance pathways such as LDL receptor (maintains the

plasma levels of LDL) rather than directly affecting Lp(a)

assembly or secretion.58

These findings aid us in the understanding of lipid me-

tabolism in drusen formation and AMD development, as

well as the clinical implications of modifying blood lipid

concentrations in preventing AMD. The clinical hallmark

of early stage AMD is the presence of drusen, with �40%

of drusen content comprised of lipids. Lipids may be in-

volved in the initiation and formation of drusen in the early

and intermediate stages. This is supported by the associa-

tions between HDL-C/LDL-C/TG and intermediate AMD.

Both CNV and GA AMD are subtypes of advanced AMD,

the late stage of AMD that can cause vision loss. This study

shows that LDL-C and TG are associated with GA AMD,

and their roles in CNV AMD appear limited, suggesting

different pathogenesis pathways for GA and CNV AMD

subtypes. Currently, there are no effective medications for

GA subtype, and the anti-vascular endothelial growth fac-

tor therapies for CNV are also not curative.12 These MR

findings suggest the potential utility of lipid modifying

therapies in AMD treatment, and shed light on the differ-

ent roles of lipid subfractions on different AMD subtypes

(Figure 2). A recent study also showed that high-dose sta-

tins may have a particular role in large drusenoid deposits

in AMD patients, and result in regression of large drusen

and improvement of visual acuity.59 Further clinical trials

are warranted to investigate different lipid-modifying

drugs in specific AMD subtypes rather than in a broad

range of AMD subtypes.

A strength of this study is that we used large-scale data

sets with standard protocols to measure lipid biomarkers;

this allowed us to systematically evaluate the effects of

lipids on AMD risk. Compared with traditional observa-

tional studies, MR findings are less likely to be affected by

confounding or bias from reverse causation. To the best of

our knowledge to date, this is the first study to have com-

prehensively evaluated the relationships between lipid/lipo-

protein biomarkers and different AMD stages and

subtypes through a MR framework. In particular, unlike

some previous studies we have considered a wide range of

lipids and lipoproteins. Dyslipidaemia has been involved in

the formation of drusen, which are characterized in the

early stage of AMD. This study based on different AMD

stages and subtypes provides new insights into the role of

lipids in AMD risk and development. At the same time,

our results should be interpreted in light of the study’s limi-

tations. Firstly, as this study is based on European ancestry

participants, the generalizability of our findings to other

ethnic groups needs further investigation. Moreover, in a

MR framework, the genetically predisposed biomarker

changes are assumed to have a linear and lifetime effect on

AMD risk. The potentially non-linear relationships and

short-term effects of these biomarkers are unclear. This

study indicates the role of circulating lipids on AMD risk;

further studies are needed to investigate the effects of

retina-specific lipid metabolism on AMD risk. Finally, in

this study we used publicly available AMD samples and

were unable to assess the potential selection bias due to

competing risk, such as coronary artery disease (CAD). We

performed an exploratory analysis computing the genetic

correlation between CAD and AMD and found the

correlations were close to zero (data not shown). We also

conducted a MVMR analysis of CAD, LDL-C and TG

(as three exposures) on AMD risk, and found no evidence

of association between CAD and AMD risk (Supplementary
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Figure S9, available as Supplementary data at IJE online).

The MVMR results for LDL-C were essentially unchanged

relative to the previous MVMR results in Figure 3, sug-

gesting that broadly speaking our typically elderly AMD

samples were not enriched for cardioprotective genetic

factors; these results suggest our MR findings are unlikely

to be driven by competing risk of conditions with shared

aetiology.60

Conclusion

This study provides genetic evidence that elevated circulat-

ing HDL-C and ApoA1 levels increase the risk of all AMD

subtypes, whereas LDL-C, ApoB, CHOL and non-HDL-C

levels are particularly associated with decreased risk of in-

termediate and GA AMD. The inconsistent results from

previous studies can be partly explained by the large het-

erogeneity of AMD disease (different stages and subtypes)

in these studies. This study provides new insights into the

pathogenesis of AMD. Further studies are warranted to in-

vestigate the role of lipid metabolism in drusen formation

and AMD development in the early and intermediate

stages, and the utility of lipid pathways for therapeutic

treatment in preventing AMD.
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